On account of excellent thermal physical properties, molten nitrates/nitrites salt has been widely employed in heat transfer and thermal storage industry, especially in concentrated solar power system. The thermal stability study of molten nitrate/nitrite salt is of great importance for this system, and the decomposition mechanism is the most complicated part of it. The oxide species O22− and O2 were considered as intermediates in molten KNO3-NaNO3 while hard to been detected in high temperature molten salt due to their trace concentration and low stability. In this work, the homemade in situ high temperature UV-Vis instrument and a commercial electron paramagnetic resonance were utilized to supply evidence for the formation of superoxide during a slow decomposition process of heat transfer salt (HTS, 53 wt% KNO3/40 wt% NaNO2/7 wt% NaNO3). It is found that the superoxide is more easily generated from molten NaNO2 compared to NaNO3, and it has an absorption band at 420–440 nm in HTS which red shifts as temperature increases. The band is assigned to charge-transfer transition in NaO2 or KO2, responsible for the yellow color of the molten nitrate/nitrite salt. Furthermore, the UV absorption bands of molten NaNO2 and NaNO3 are also obtained and compared with that of HTS.

[1]
H. L.
Zhang
,
J.
Baeyens
,
J.
Degrève
, and
G.
Cacères
,
Renew. Sustain. Energy Rev.
22
,
466
(
2013
).
[2]
B.
Xu
,
P. W.
Li
, and
C.
Chan
,
Appl. Energy
160
,
286
(
2015
).
[3]
R. I.
Dunn
,
P. J.
Hearps
, and
M. N.
Wright
,
Proc. IEEE
100
,
504
(
2012
).
[4]
L. J.
Wang
and
Q. Y.
Yan
,
Mater. Sci.
5
,
72
(
2015
).
[5]
D.
Kearney
,
U.
Herrmann
,
P.
Nava
,
B.
Kelly
,
R.
Mahoney
,
J.
Pacheco
,
R.
Cable
,
N.
Potrovitza
,
D.
Blake
, and
H.
Price
,
J. Sol. Energy Eng.
125
,
293
(
2003
).
[6]
K.
Vignarooban
,
X. H.
Xu
,
A.
Arvay
,
K.
Hsu
, and
A. M.
Kannan
,
Appl. Energy
146
,
383
(
2015
).
[7]
U.
Herrmann
,
B.
Kelly
, and
H.
Price
,
Energy
29
,
883
(
2004
).
[8]
D.
Kearney
,
B.
Kelly
,
U.
Herrmann
,
R.
Cable
,
J.
Pacheco
,
R.
Mahoney
,
H.
Price
,
D.
Blake
,
P.
Nava
, and
N.
Potrovitza
,
Energy
29
,
861
(
2004
).
[9]
G. J.
Janz
and
G. N.
Truong
,
J. Chem. Eng. Data
28
,
201
(
1983
).
[10]
C. T.
Yang
,
X. L.
Wei
,
W. L.
Wang
,
Z. H.
Lin
,
J.
Ding
,
Y.
Wang
,
Q.
Peng
, and
J. P.
Yang
,
Appl. Energy
184
,
346
(
2016
).
[11]
J.
Alexander
 Jr.
and
S. G.
Hindin
,
Ind. Eng. Chem.
39
,
1044
(
1947
).
[12]
Q.
Peng
,
X. X.
Yang
,
J.
Ding
,
X. L.
Wei
, and
J. P.
Yang
,
CIESC J.
64
,
1507
(
2013
).
[13]
[14]
K. H.
Stern
,
J. Phys. Chem. Ref. Data
1
,
747
(
1972
).
[15]
C. M.
Kramer
,
Z. A.
Munir
, and
J. V.
Volponi
,
Sol. Energy
29
,
437
(
1982
).
[16]
R. N.
Kust
and
J. D.
Burke
,
Inorg. Nucl. Chem. Lett.
6
,
333
(
1970
).
[17]
A. A.
El Hosary
,
D. H.
Kerridge
, and
A. M.
Shama El Din
,
Oxide Species in Molten Salts. Ionic Liquids
,
D.
Inman
and
D. G.
Lovering
Eds.,
New York
:
Springer
, (
1981
).
[18]
E. S.
Freeman
,
J. Am. Chem. Soc.
79
,
838
(
1957
).
[19]
B. D.
Bond
and
P. W. M.
Jacobs
,
J. Chem. Soc. A
1265
(
1966
).
[20]
D. A.
Nissen
and
D. E.
Meeker
,
Inorg. Chem.
22
,
716
(
1983
).
[21]
P. G.
Zambonin
and
J.
Jordan
,
J. Am. Chem. Soc.
89
,
6365
(
1967
).
[22]
P. G.
Zambonin
and
J.
Jordan
,
J. Am. Chem. Soc.
91
,
2225
(
1969
).
[23]
P. G.
Zambonin
,
F.
Paniccia
, and
A.
Bufo
,
J. Phys. Chem.
76
,
422
(
1972
).
[24]
P. G.
Zambonin
,
Chemischer Informationsdienst
5
,
1294
(
1974
).
[25]
M.
Hayyan
,
M. A.
Hashim
, and
I. M.
Alnashef
,
Chem. Rev.
116
,
3029
(
2016
).
[26]
D. M.
Lindsay
,
D. R.
Herschbach
, and
A. L.
Kwiram
,
Chem. Phys. Lett.
25
,
175
(
1974
).
[27]
R. R.
Smardzewski
and
L.
Andrews
,
J. Chem. Phys.
57
,
1327
(
1972
).
[28]
L.
Andrews
,
J. Mol. Spectrosc.
61
,
337
(
1976
).
[29]
A. U.
Khan
and
S. D.
Mahanti
,
J. Chem. Phys.
63
,
2271
(
1975
).
[30]
M.
Bosch
and
W.
Kanzig
,
Helv. Phys. Acta
48
,
743
(
1975
).
[31]
T.
Ozawa
and
A.
Hanaki
,
FEBS Lett.
74
,
99
(
1977
).
[32]
L.
Andrews
,
J. Phys. Chem.
73
,
3922
(
1969
).
[33]
S.
Passerini
and
T.
Mckrell
,
J. Nanofluids
1
,
78
(
2012
).
[34]
J. Z.
Li
and
P. K.
Dasgupta
,
Rev. Sci. Instrum.
71
,
2283
(
2000
).
[35]
X. W.
Hu
,
Z.
Sheng
,
B. L.
Gao
,
Z. N.
Shi
,
C. S.
Huang
, and
Z. W.
Wang
,
Metall. Anal.
34
,
32
(
2014
).
[36]
F. L.
Whiting
,
G.
Mamantov
, and
J. P.
Young
,
J. Inorg. Nucl. Chem.
34
,
2475
(
1972
).
[37]
P. J.
Bruna
and
F.
Grein
,
Mol. Phys.
97
,
321
(
1999
).
[38]
G. D.
Zhou
,
Inorganic Structural Chemistry
,
Beijing
:
Science Press
, (
1982
).
[39]
X. L.
Lv
,
Chemistry of Inorganic Hyperoxide
,
Beijing
:
Science Press
, (
1987
).
[40]
H. R.
Zeller
and
W.
Kanzig
,
Helv. Phys. Acta
40
,
845
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.