Anatase TiO2(001) surface arouses lots of research interests since it is believed to be the most reactive surface. However, recent STM measurements showed that except the defect sites, anatase TiO2(001) (1×4) reconstructed surface is inert to H2O adsorption. It was indicated that oxidation could be the reason which induces the inert surface reactivity. Therefore, it is strongly motivated to understand the oxidation structures as well as the oxidation process on this surface. In this work, based on first principles calculations, we investigated the oxidized structures and processes of TiO2 anatase (001) surface with (1×4) reconstruction. We have discovered two kinds of oxidized structures through the molecular adsorption and dissociated adsorption with different oxidation ratio. To understand the oxidation process, we studied the reaction barrier of oxidation process. We conclude the stability of different oxidized structures with different oxidation ratio by comparing the free energy of the system as a function of oxygen chemical potential. Based on that, a first-principles-based phase diagram of the low-energy oxidized surface structures is provided. The effects of the lattice stress are also studied. Results show that the oxidized structure and oxidation ratio strongly depend on the temperature and pressure. The lattice stress also plays an important role.

[1]
A.
Fujishima
and
K.
Honda
,
Nature
238
,
37
(
1972
).
[3]
A.
Fujishima
,
X.
Zhang
, and
D.
Tryk
,
Surf. Sci. Rep.
63
,
515
(
2008
).
[4]
M. A.
Henderson
,
Surf. Sci. Rep.
66
,
185
(
2011
).
[5]
A.
Vittadini
,
A.
Selloni
,
F. P.
Rotzinger
, and
M.
Gratzel
,
Phys. Rev. Lett.
81
,
2954
(
1998
).
[6]
G. S.
Herman
,
Z.
Dohnalek
,
N.
Ruzycki
, and
U.
Diebold
,
J. Phys. Chem. B
107
,
2788
(
2003
).
[7]
X. Q.
Gong
and
A.
Selloni
,
J. Phys. Chem. B
109
,
19560
(
2005
).
[8]
M.
Lazzeri
and
A.
Selloni
,
Phys. Rev. Lett.
87
,
266105
(
2001
).
[9]
X. Q.
Gong
,
A.
Selloni
, and
A.
Vittadini
,
J. Phys. Chem. B
110
,
2804
(
2006
).
[10]
H. G.
Yang
,
C. H.
Sun
,
S. Z.
Qiao
,
J.
Zou
,
G.
Liu
,
S. C.
Smith
,
H. M.
Cheng
, and
G. Q.
Lu
,
Nature
453
,
638
(
2008
).
[11]
Sugiharto
,
S.
Yamamoto
,
T.
Sumita
, and
A.
Miyashita
,
J. Phys. Condens. Matter
13
,
2875
(
2001
).
[12]
S. A.
Chambers
,
C. M.
Wang
,
S.
Thevuthasan
,
T.
Droubay
,
D. E.
McCready
,
A. S.
Lea
,
V.
Shutthanandan
, and
C. F.
Windisch
,
Thin Solid Films
418
,
197
(
2002
).
[13]
M. D.
McDaniel
,
A.
Posadas
,
T.
Wang
,
A. A.
Demkov
, and
J. G.
Ekerdt
,
Thin Solid Films
520
,
6525
(
2012
).
[14]
T.
Ohsawa
,
I. V.
Lyubinetsky
,
M. A.
Henderson
, and
S. A.
Chambers
,
J. Phys. Chem. C
112
,
20050
(
2008
).
[15]
J.
Pan
,
G.
Liu
,
G. Q. M.
Lu
, and
H. M.
Cheng
,
Angew. Chem. Int. Ed.
50
,
2133
(
2011
).
[16]
T.
Tachikawa
,
S.
Yamashita
, and
T.
Majima
,
J. Am. Chem. Soc.
133
,
7197
(
2011
).
[17]
Y.
Wang
,
H. J.
Sun
,
S. J.
Tan
,
H.
Feng
,
Z. W.
Cheng
,
J.
Zhao
,
A. D.
Zhao
,
B.
Wang
,
Y.
Luo
,
J. L.
Yang
, and
J. G.
Hou
,
Nat. Commun.
4
,
2214
(
2013
).
[18]
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
48
,
13115
(
1993
).
[19]
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
47
,
558
(
1993
).
[20]
G.
Kresse
and
J.
Hafner
,
Phys. Rev. B
49
,
14251
(
1994
).
[21]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[22]
G.
Kresse
and
D.
Joubert
,
Phys. Rev. B
59
,
1758
(
1999
).
[23]
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
[24]
J.
Rogal
and
K.
Reuter
,
Ab initio Atomistic Thermodynamics for Surfaces: A Primer
,
Report No.RTO-EN-AVT-142
, (
2006
).
[25]
K.
Reuter
and
M.
Scheffler
,
Phys. Rev. B
68
,
045407
(
2003
).
[26]
J. M.
Sanchez
,
F.
Ducastelle
, and
D.
Gratias
,
Physica A
128
,
334
(
1984
).
[27]
A.
Zunger
, in
Statics and Dynamics of Alloy Phase Transformations
,
Berlin
:
Springer
,
361
(
1994
).
[28]
S.
Liu
,
J.
Yu
, and
M.
Jaroniec
,
J. Am. Chem. Soc.
132
,
11914
(
2010
).
[29]
D.
Zhang
,
G.
Li
,
X.
Yang
, and
J. C.
Yu
,
Chem. Commun.
4381
(
2009
).
[30]
T.
Ohsawa
,
I. V.
Lyubinetsky
,
M. A.
Henderson
, and
S. A.
Chambers
,
J. Phys. Chem. C
112
,
20050
(
2008
).
[31]
J.
Pan
,
G.
Liu
,
G. M.
Lu
, and
H. M.
Cheng
,
Angew. Chem. Int. Ed.
50
,
2133
(
2011
).
[32]
Z.
Zheng
,
B.
Huang
,
J.
Lu
,
X.
Qin
,
X.
Zhang
, and
Y.
Dai
,
Chemistry
17
,
15032
(
2011
).
This content is only available via PDF.
You do not currently have access to this content.