Phase equilibria of hydrogen bonding (HB) fluid confined in a slit pore with broken symmetry were investigated by the density functional theory incorporated with modified fundamental measure theory, where the symmetry breaking originated from the distinct interactions between fluid molecules and two walls of the slit pore. In terms of adsorption-desorption isotherms and the corresponding grand potentials, phase diagrams of HB fluid under various conditions are presented. Furthermore, through phase coexistences of laying transition and capillary condensation, the effects of HB interaction, pore width, fluid-pore interaction and the broken symmetry on the phase equilibrium properties are addressed. It is shown that these factors can give rise to apparent influences on the phase equilibria of confined HB fluid because of the competition between intermolecular interaction and fluid-pore interaction. Interestingly, a significant influence of broken symmetry of the slit pore is found, and thus the symmetry breaking can provide a new way to regulate the phase behavior of various confined fluids.

[1]
L. J.
Dunne
and
G.
Manos
,
Adsorption and Phase Behaviour in Nanochannels and Nanotubes
,
New York
:
Springer
,
241
(
2010
).
[2]
T.
Jozsef
,
Adsorption: Theory, Modeling and Analysis
,
New York
:
Marcel Dekker
,
175
(
2002
).
[3]
R.
Evans
,
J. Phys.: Condens. Matter
2
,
8989
(
1990
).
[4]
I. A.
Hadjiagapiou
,
Phys. Rev. E
65
,
021605
(
2002
).
[5]
A. V.
Neimark
,
P. I.
Ravikovitch
, and
A.
Vishnyakov
,
Phys. Rev. E
65
,
031505
(
2002
).
[6]
J. Z.
Wu
,
J. Phys. Chem. B
113
,
6813
(
2009
).
[7]
G. A.
Jeffrey
,
An Introduction to Hydrogen Bonding
,
Oxford
:
Oxford University Press
,
135
(
1997
).
[8]
C.
Panayiotou
and
I. C.
Sanchez
,
J. Phys. Chem.
95
,
10090
(
1991
).
[9]
H. J.
Wang
,
F.
Gu
,
X. Z.
Hong
, and
X. W.
Ba
,
Sci. China. Ser. B
50
,
183
(
2007
).
[10]
T. V.
Ramakrishnan
and
M.
Yussouff
,
Phys. Rev. B
19
,
2775
(
1979
).
[11]
R.
Evans
,
Density Functional in the Theory of Nonuniform Fluids
, In:
D.
Henderson
Fundamentals of Inhomogeneous Fluids
,
New York
:
Marcel Dekker
,
85
(
1992
).
[12]
M.
Jia
,
W. H.
Zhao
, and
L. F.
Yuan
,
Chin. J. Chem. Phys.
27
,
15
(
2014
).
[13]
F. X.
Lang
,
K.
Shen
,
X. Z.
Qu
,
C. L.
Zhang
,
Q.
Wang
,
J. L.
Li
,
J. G.
Liu
, and
Z. Z.
Yang
,
Angew. Chem. Int. Ed.
50
,
2379
(
2011
).
[14]
[15]
R.
Roth
,
R.
Evans
,
A.
Lang
, and
G.
Kahl
,
J. Phys.: Condens. Matter
14
,
12063
(
2002
).
[16]
Y. X.
Yu
and
J. Z.
Wu
,
J. Chem. Phys.
117
,
10156
(
2002
).
[17]
Z. D.
Li
,
D. P.
Cao
, and
J. Z.
Wu
,
J. Chem. Phys.
122
,
224701
(
2005
).
[18]
D.
Fu
and
X. S.
Li
,
J. Chem. Phys.
125
,
084716
(
2006
).
[19]
B.
Peng
and
Y. X.
Yu
,
J. Phys. Chem. B
112
,
15407
(
2008
).
[20]
P.
Tarazona
,
M. M. T.
Dagama
, and
R.
Evans
,
Mol. Phys.
49
,
283
(
1983
).
[21]
P.
Tarazona
,
U. M. B.
Marconi
, and
R.
Evans
,
Mol. Phys.
60
,
573
(
1987
).
[22]
Y. X.
Yu
,
F. Q.
You
,
Y. P.
Tang
,
G. H.
Gao
, and
Y. G.
Li
,
J. Phys. Chem. B
110
,
334
(
2006
).
[23]
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
[24]
H. J.
Wang
,
X. Z.
Hong
,
F.
Gu
, and
X. W.
Ba
,
Sci. China. Ser. B
49
,
499
(
2006
).
[25]
F.
Gu
,
H. J.
Wang
, and
D.
Fu
,
Sci. Sin. Chim.
43
,
55
(
2013
).
[26]
[27]
Y. X.
Yu
,
G. H.
Gao
, and
X. L.
Wang
,
J. Phys. Chem. B
110
,
14418
(
2006
).
[28]
F. Q.
You
,
Y. X.
Yu
, and
G. H.
Gao
,
J. Chem. Phys.
123
,
114705
(
2005
).
[29]
B.
Peng
and
Y. X.
Yu
,
Langmuir
,
24
,
12431
(
2008
).
[30]
Y. X.
Yu
,
J. Chem. Phys.
131
,
024704
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.