Besides carbon solubility, the carbide formation possibility is another important factor to differentiate various substrate materials in graphene growth. A recent experiment indicates that the formation of transition metal carbides (TMCs) can suppress carbon precipitation. In this study, Mo2C, a representative of TMCs, is used to study the effects of carbide formation in graphene growth from first principles. Carbon diffusion in Mo2C bulk turns out to be very difficult and it becomes much easier on the Mo2C(001) surface. Therefore, carbon precipitation suppression and graphene growth can be realized simultaneously. A direction depended diffusion behavior is observed on the Mo2C(101) surface, which makes it less favorable for graphene growth compared to the (001) surface.

[1]
A. H. Castro
Neto
,
F.
Guinea
,
N. M. R.
Peres
,
K. S.
Novoselov
, and
A. K.
Geim
,
Rev. Mod. Phys.
81
,
109
(
2009
).
[2]
K. S.
Novoselov
,
V. I.
Falko
,
L.
Colombo
,
P. R.
Gellert
,
M. G.
Schwab
, and
K.
Kim
,
Nature
490
,
192
(
2012
).
[3]
F.
Bonaccorso
,
A.
Lombardo
,
T.
Hasan
,
Z.
Sun
,
L.
Colombo
, and
A. C.
Ferrari
,
Mater. Today
15
,
564
(
2012
).
[4]
S.
Bae
,
H.
Kim
,
Y.
Lee
,
X.
Xu
,
J. S.
Park
,
Y.
Zheng
,
J.
Balakrishnan
,
T.
Lei
,
H. R.
Kim
, and
Y. I.
Song
,
Nat. Nanotechnol.
5
,
574
(
2010
).
[5]
N. C.
Bartelt
and
K. F.
McCarty
,
MRS Bull.
37
,
1158
(
2012
).
[6]
X. S.
Li
,
W. W.
Cai
,
J. H.
An
,
S. Y.
Kim
,
J. H.
Nah
,
D. X.
Yang
,
R.
Piner
,
A.
Velamakanni
,
I. H.
Jung
,
E.
Tutuc
,
S. K.
Banerjee
,
L.
Colombo
, and
R. S.
Ruoff
,
Science
324
,
1312
(
2009
).
[7]
P.
Wu
,
W. H.
Zhang
,
Z. Y.
Li
, and
J. L.
Yang
,
Small
10
,
2136
(
2014
).
[8]
P.
Wu
,
H. J.
Jiang
,
W. H.
Zhang
,
Z. Y.
Li
,
Z. H.
Hou
, and
J. L.
Yang
,
J. Am. Chem. Soc.
134
,
6045
(
2012
).
[9]
W. H.
Zhang
,
P.
Wu
,
Z. Y.
Li
, and
J. L.
Yang
,
J. Phys. Chem. C
115
,
22360
(
2011
).
[10]
C. P.
Deck
and
K.
Vecchio
,
Carbon
44
,
267
(
2006
).
[11]
X.
Li
,
W.
Cai
,
L.
Colombo
, and
R. S.
Ruoff
,
Nano Lett.
9
,
4268
(
2009
).
[12]
L.
Fu
,
C. H.
Zhang
,
Y. F.
Zhang
, and
Z. F.
Liu
,
Acta Chim. Sin.
71
,
308
(
2013
).
[13]
Z. Y.
Zou
,
L.
Fu
,
X. J.
Song
,
Y. F.
Zhang
, and
Z. F.
Liu
,
Nano Lett.
14
,
3832
(
2014
).
[14]
S.
Sampath
and
S. F.
Wayne
,
J. Therm. Spray Technol.
3
,
282
(
1994
).
[15]
G.
Kresse
and
J.
Furthmüller
,
Comp. Mater. Sci.
6
,
15
(
1996
).
[16]
G.
Kresse
and
J.
Furthmüller
,
Phys. Rev. B
54
,
11169
(
1996
).
[17]
[18]
J. P.
Perdew
,
K.
Burke
, and
M.
Ernzerhof
,
Phys. Rev. Lett.
77
,
3865
(
1996
).
[19]
Q. Q.
Luo
,
T.
Wang
,
G.
Walther
,
M.
Beller
, and
H. J.
Jiao
,
J. Power Sources
246
,
548
(
2014
).
[20]
M.
Methfessel
and
A. T.
Paxton
,
Phys. Rev. B
40
,
3616
(
1989
).
[21]
G.
Henkelman
,
B. P.
Uberuaga
, and
H.
Jónsson
,
J. Chem. Phys.
113
,
9901
(
2000
).
[22]
C.
Pistonesi
,
A.
Juan
,
A. P.
Farkas
, and
F.
Solymosi
,
Surf. Sci.
604
,
914
(
2010
).
[23]
J.
Dubois
,
T.
Epicier
,
C.
Esnouf
,
G.
Fantozzi
, and
P.
Convert
,
Acta Metall.
36
,
1891
(
1988
).
[24]
T.
Epicier
,
J.
Dubois
,
C.
Esnouf
,
G.
Fantozzi
, and
P.
Convert
,
Acta Metall.
36
,
1903
(
1988
).
[25]
T.
Wang
,
X. W.
Liu
,
S. G.
Wang
,
C. F.
Huo
,
Y. W.
Li
,
J. G.
Wang
, and
H. J.
Jiao
,
J. Phys. Chem. C
115
,
22360
(
2011
).
[26]
J.
Haines
,
J.
Leger
,
C.
Chateau
, and
J.
Lowther
,
J. Phys.: Condens. Matter
13
,
2447
(
2001
).
[27]
E.
Rudy
,
S.
Windisch
,
A. J.
Stosick
, and
J. R.
Hoffman
,
Trans. Metall. Soc. AIME
239
,
1247
(
1967
).
[28]
X. R.
Shi
,
S. G.
Wang
,
H.
Wang
,
C. M.
Deng
,
Z.
Qin
, and
J.
Wang
,
Surf. Sci.
603
,
852
(
2009
).
[29]
X. H.
Wang
,
H. L.
Hao
,
M. H.
Zhang
,
W.
Li
, and
K. Y.
Tao
,
J. Solid State Chem.
179
,
538
(
2006
).
[30]
M.
Nagai
,
A. M.
Zahidul
, and
K.
Matsuda
,
Appl. Catal. A
313
,
137
(
2006
).
This content is only available via PDF.
You do not currently have access to this content.