Using density functional theory (DFT), the thermodynamic parameters of the CO2 absorption into the aqueous solution of the aliphatic amines including some alkylamines, alkanolamines, diamines and a type of aminoamide were calculated. The geometry optimization and the calculation of vibrational frequencies in the gas phase were performed at the B3LYP/6-311++G(d,p) level of theory. Moreover, the standard solvation free energies of the studied species were computed upon the solution phase optimized geometries through the latest continuum solvation model (SMD/IEF-PCM) at the HF/6-31G(d) level of theory. With this approach, two important properties of the CO2 absorption into the aqueous solutions of the studied amines were evaluated: the acid dissociation constant (pKa) of the parent amines and the standard enthalpy change (δ H abs ) related to the CO2 absorption process. A roughly linear relationship was observed between pKa and δ H abs . This finding suggests that a raise in the basicity of an amine leads to an increase in the heat released in CO2 absorption and consequently in the required energy for the regeneration of amine.

[2]
J. D.
Figueroa
,
T.
Fout
,
S.
Plasynski
,
H.
McIlvried
, and
R. D.
Srivastava
,
Int. J. Greenh. Gas. Con.
2
,
9
(
2008
).
[3]
A. B.
Rao
and
E. S.
Rubin
,
Environ. Sci. Technol.
36
,
4467
(
2002
).
[4]
S.
Freguia
and
G. T.
Rochelle
,
AIChE J.
49
,
1676
(
2003
).
[5]
D.
Singh
,
E.
Croiset
,
P. L.
Douglas
, and
M. A.
Douglas
,
Energy Convers. Manage.
44
,
3073
(
2003
).
[6]
G. F.
Versteeg
and
W. P. M.
van Swaaij
,
Chem. Eng. Process.
24
,
163
(
1988
).
[7]
R.
Idem
,
M.
Wilson
,
P.
Tontiwachwuthikul
,
A.
Chakma
,
A.
Veawab
,
A.
Aroonwilas
, and
D.
Gelowitz
,
Ind. Eng. Chem. Res.
45
,
2414
(
2006
).
[8]
J.
Yang
,
X.
Yu
,
J.
Yan
, and
S.
Tu
,
Ind. Eng. Chem. Res.
53
,
2790
(
2014
).
[9]
G.
Sartori
and
D. W.
Savage
,
Ind. Eng. Chem. Fundamen.
22
,
239
(
1983
).
[10]
J.
Gabrielsen
,
M. L.
Michelsen
,
E. H.
Stenby
, and
G. M.
Kontogeorgis
,
AIChE J.
52
,
3443
(
2006
).
[11]
S.
Mamun
,
J. P.
Jakobsen
, and
H. F.
Svendsen
,
Ind. Eng. Chem. Res.
45
,
2505
(
2006
).
[12]
A.
Hartono
,
E. F.
da Silva
, and
H. G.
Svendsen
,
Chem. Eng. Sci.
64
,
3205
(
2009
).
[13]
G. F.
Versteeg
,
L. A. J.
van Dijck
, and
W. P. M.
van Swaaij
,
Chem. Eng. Commun.
144
,
113
(
1996
).
[14]
I.
Kim
and
H. F.
Svendsen
,
Ind. Eng. Chem. Res.
46
,
5803
(
2007
).
[15]
N.
McCann
,
M.
Maeder
, and
H.
Hasse
,
Energy Procedia
4
,
1542
(
2011
).
[16]
Y. E.
Kim
,
S. J.
Moon
,
Y. I.
Yoon
,
S. K.
Jeong
,
J.
Park
,
S. P.
Bae
, and
S. C.
Nama
,
Sep. Purif. Technol.
122
,
112
(
2014
).
[17]
A.
Maiti
,
W. L.
Bourcier
, and
R. D.
Aines
,
Chem. Phys. Lett.
509
,
25
(
2011
).
[18]
E. F.
da Silva
and
H. F.
Svendsen
,
Ind. Eng. Chem. Res.
45
,
2497
(
2006
).
[19]
H.
Yamada
,
Y.
Matsuzaki
,
F.
Chowdhury
, and
T.
Higashii
,
J. Mol. Model.
19
,
4147
(
2013
).
[20]
H. B.
Xie
,
J. K.
Johnson
,
R. J.
Perry
,
S.
Genovese
, and
B. R.
Wood
,
J. Phys. Chem. A
115
,
342
(
2011
).
[21]
K.
Iida
and
H. J.
Sato
,
Phys. Chem. B
116
,
2244
(
2012
).
[22]
M. J.
Frisch
,
G. W.
Trucks
,
H. B.
Schlegel
,
G. E.
Scuseria
,
M. A.
Robb
,
J. R.
Cheeseman
,
G.
Scalmani
,
V.
Barone
,
B.
Mennucci
,
G. A.
Petersson
,
H.
Nakatsuji
,
M.
Caricato
,
X.
Li
,
H. P.
Hratchian
,
A. F.
Izmaylov
,
J.
Bloino
,
G.
Zheng
,
J. L.
Sonnenberg
,
M.
Hada
,
M.
Ehara
,
K.
Toyota
,
R.
Fukuda
,
J.
Hasegawa
,
M.
Ishida
,
T.
Nakajima
,
Y.
Honda
,
O.
Kitao
,
H.
Nakai
,
T.
Vreven
,
J. A. Jr.
Montgomery
,
J. E.
Peralta
,
F.
Ogliaro
,
M.
Bearpark
,
J. J.
Heyd
,
E.
Brothers
,
K. N.
Kudin
,
V. N.
Staroverov
,
R.
Kobayashi
,
J.
Normand
,
K.
Raghavachari
,
A.
Rendell
,
J. C.
Burant
,
S. S.
Iyengar
,
J.
Tomasi
,
M.
Cossi
,
N.
Rega
,
J. M.
Millam
,
M.
Klene
,
J. E.
Knox
,
J. B.
Cross
,
V.
Bakken
,
C.
Adamo
,
J.
Jaramillo
,
R.
Gomperts
,
R. E.
Stratmann
,
O.
Yazyev
,
A. J.
Austin
,
R.
Cammi
,
C.
Pomelli
,
J. W.
Ochterski
,
R. L.
Martin
,
K.
Morokuma
,
V. G.
Zakrzewski
,
G. A.
Voth
,
P.
Salvador
,
J. J.
Dannenberg
,
S.
Dapprich
,
A. D.
Daniels
,
Ö.
Farkas
,
J. B.
Foresman
,
J. V.
Ortiz
,
J.
Cioslowski
, and
D. J.
Fox
,
Gaussian 09
, Revision A 02,
Wallingford, CT
:
Gaussian
(
2009
).
[23]
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
[24]
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
[25]
M.
Gupta
,
E. F.
da Silva
, and
H. F.
Svendsena
,
Energy Procedia
37
,
1720
(
2013
).
[26]
N.
Kim
,
S.
Yoon
, and
G.
Park
,
Tetrahedron
69
,
6693
(
2013
).
[27]
V. S.
Bryantsev
,
M. S.
Diallo
, and
W. A.
Goddard
,
J. Phys. Chem. A
111
,
4422
(
2007
).
[28]
M. D.
Liptak
and
G. C.
Shields
,
J. Am. Chem. Soc.
123
,
7314
(
2001
).
[29]
A. V.
Marenich
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
113
,
6378
(
2009
).
[30]
J.
Ho
,
A.
Klamt
, and
M. L.
Coote
,
J. Phys. Chem. A
,
114
,
13442
(
2010
).
[31]
C. P.
Kelly
,
C. J.
Cramer
, and
D. G.
Truhlar
,
J. Phys. Chem. B
110
,
16066
(
2006
).
[32]
E. F.
da Silva
,
T.
Kuznetsova
, and
K. M.
Merz
,
J. Phys. Chem. B
111
,
3695
(
2007
).
(a)
E. P.
Hunter
, and
S. G.
Lias
,
J. Phys. Chem. Ref. Data
27
,
413
(
1998
).
(b)
P. J.
Linstrom
and
W. G.
Mallard
,
NIST Chemistry WebBook, NIST Standard Reference Database Number 69
,
Gaithersburg, MD
:
National Institute of Standards and Technology
, http://webbook.nist.gov, March (
2003
).
[34]
D. R.
Lide
,
CRC Handbook of Chemistry and Physics
,
Boca Raton, FL
:
CRC Press
, (
2009
).
[35]
J. J.
Christensen
,
R. M.
Izatt
,
D. P.
Wrathall
, and
L. D.
Hansen
,
J. Chem. Soc. A
8
,
1212
(
1969
).
[36]
E. R.
Bissell
and
M. J.
Finger
,
Org. Chem.
24
,
1256
(
1959
).
(a)
D. D.
Perrin
,
B.
Dempsey
, and
E. P.
Sergeant
,
pKaPrediction for Organic Acids and Bases
,
New York
:
Chapman and Hall
, (
1981
).
(b)
D. D.
Perrin
,
Dissociation Constants of Organic Bases in Aqueous Solution, Supplement
,
London
:
Butterworths
, (
1972
).
This content is only available via PDF.
You do not currently have access to this content.