An electron transporting material of TFTTP (4-(5-hexylthiophene-2-yl)-2,6-bis(5-trifluoromethyl)thiophen-2-yl)pyridine) was investigated as a cathode buffer layer to enhance the power efficiency of organic solar cells (OSCs) based on subphthalocyanine and C60. The overall power conversion efficiency was increased by a factor of 1.31 by inserting the TFTTP interfacial layer between the active layer and metallic cathode. The inner mechanism responsible for the performance enhancement of OSCs was systematically studied with the simulation of dark diode behavior and optical field distribution inside the devices as well as the characterization of device photocurrent. The results showed that the TFTTP layer could significantly increase the built-in potential in the devices, leading to the enhanced dissociation of charge transfer excitons. In addition, by using TFTTP as the buffer layer, a better Ohmic contact at C60/metal interface was formed, facilitating more efficient free charge carrier collection.

[1]
J. Y.
Kim
,
K.
Lee
,
N. E.
Coates
,
D.
Moses
,
T. Q.
Nguyen
,
M.
Dante
, and
A. J.
Heeger
,
Science
317
,
222
(
2007
).
[2]
Y.
Yang
and
F.
Wudl
,
Adv. Mater.
21
,
1401
(
2009
).
[3]
J.
Huang
,
J. S.
Yu
,
Z. Q.
Guan
, and
Y. D.
Jiang
,
Appl. Phys. Lett.
97
,
143301
(
2010
).
[4]
J.
Huang
,
Y. G.
Qi
,
H. Y.
Wang
, and
J. S.
Yu
,
Appl. Phys. Lett.
102
,
183302
(
2013
).
[5]
Y.
Zheng
,
S. G.
Li
,
X. G.
Yu
,
D.
Zheng
, and
J. S.
Yu
,
RSC Adv.
4
,
16464
(
2014
).
[6]
L. T.
Dou
,
J. B.
You
,
J.
Yang
,
C. C.
Chen
,
Y. J.
He
,
S.
Murase
,
T.
Moriarty
,
K.
Emery
,
G.
Li
, and
Y.
Yang
,
Nat. Photon.
6
,
180
(
2012
).
[7]
Solarmer Energy Inc. breaks psychological barrier with 8.13% OPV efficiency
, http://www.solarmer.com/news.php.
[8]
Heliatek and IAPP achieve production-relevant efficiency record for organic photovoltaic cells
, http://www.heliatek.com/index.php?Page=news.
[9]
Mitsubishi Chemical To Commercialize Printable Solar Cells Next Year
, http://techcrunch.com/2011/04/06/mitsubishi-chemical-to-commercialize-printable-solar-cells-next-year/.
[10]
N. N.
Wang
,
J. S.
Yu
,
Y.
Zang
,
J.
Huang
, and
Y. D.
Jiang
,
Sol. Energy Mater. Sol. Cells
94
,
263
(
2010
).
[11]
J. S.
Yu
,
N. N.
Wang
,
Y.
Zang
,
J.
Huang
, and
Y. D.
Jiang
,
Sol. Energy Mater. Sol. Cells
95
,
664
(
2011
).
[12]
J.
Huang
,
J. S.
Yu
,
H.
Lin
, and
Y. D.
Jiang
,
J. Appl. Phys.
105
,
073105
(
2009
).
[13]
M. Y.
Chan
,
S. L.
Lai
,
K. M.
Lau
,
C. S.
Lee
, and
S. T.
Lee
,
Appl. Phys. Lett.
89
,
163515
(
2006
)
[14]
Q. L.
Song
,
F. Y.
Li
,
H.
Yang
,
H. R.
Wu
,
X. Z.
Wang
,
W.
Zhou
,
J. M.
Zhao
,
X. M.
Ding
,
C. H.
Huang
, and
X. Y.
Hou
,
Chem. Phys. Lett.
416
,
42
(
2005
).
[15]
J. Y.
Kim
,
S. H.
Kim
,
H. H.
Lee
,
K.
Lee
,
W. L.
Ma
,
X.
Gong
, and
A. J.
Heeger
,
Adv. Mater.
18
,
572
(
2006
).
[16]
H.
Gommans
,
B.
Verreet
,
B. P.
Rand
,
R.
Muller
,
J.
Poortmans
,
P.
Heremans
, and
J.
Genoe
,
Adv. Funct. Mater.
18
,
3686
(
2008
).
[17]
P.
Peumans
,
A.
Yakimov
, and
S. R.
Forrest
,
J. Appl. Phys.
93
,
3693
(
2003
).
[18]
Y. B.
Yuan
,
T. J.
Reece
,
P.
Sharma
,
S.
Poddar
,
S.
Ducharme
,
A.
Gruverman
,
Y.
Yang
, and
J. S.
Huang
,
Nat. Mater.
10
,
296
(
2011
).
[19]
M.
Vogel
,
S.
Doka
,
C.
Breyer
,
M. C.
Lux-Steiner
, and
K.
Fostiropoulosa
,
Appl. Phys. Lett.
89
,
163501
(
2006
).
[20]
N.
Li
,
B. E.
Lassiter
,
R. R.
Lunt
,
G.
Wei
, and
S. R.
Forrest
,
Appl. Phys. Lett.
94
,
023307
(
2009
).
[21]
C. W.
Chu
,
V.
Shrotriya
,
G.
Li
, and
Y.
Yang
,
Appl. Phys. Lett.
88
,
153504
(
2006
).
[22]
N. N.
Wang
,
J. D.
Zimmerman
,
X. R.
Tong
,
X.
Xiao
,
J. S.
Yu
, and
S. R.
Forrest
,
Appl. Phys. Lett.
101
,
133901
(
2012
).
[23]
R. F.
Salzman
,
J.
Xue
,
B. P.
Rand
,
A.
Alexander
,
M. E.
Thompson
, and
S. R.
Forrest
,
Org. Electron.
6
,
242
(
2005
).
[24]
B. P.
Rand
,
J. G.
Xue
,
S.
Uchida
, and
S. R.
Forrest
,
J. Appl. Phys.
98
,
124902
(
2005
).
[25]
W. Y.
Hung
,
T. H.
Ke
,
Y. T.
Lin
,
C. C.
Wu
,
T. H.
Hung
,
T. C.
Chao
,
K. T.
Wong
, and
C. I.
Wu
,
Appl. Phys. Lett.
88
,
064102
(
2006
).
[26]
S. W.
Liu
,
C. C.
Lee
,
C. F.
Lin
,
J. C.
Huang
,
C. T.
Chen
, and
J. H.
Lee
,
J. Mater. Chem.
20
,
7800
(
2010
).
[27]
C. L.
Braun
,
J. Chem. Phys.
80
,
4157
(
1984
).
[28]
N. F.
Mott
and
R. W.
Gurney
,
Electronic Processes in Ionic Crystals
,
New York
:
Dover Publications
, (
1940
).
[29]
V. D.
Mihailetchi
,
L. J. A.
Koster
,
J. C.
Hummelen
, and
P. W. M.
Blom
,
Phys. Rev. Lett.
93
,
216601
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.