Characterization of electric properties of nanomaterials usually involves fabricating field effect transistors (FET) and deriving materials properties from device performances. However, the quality of electrode contacts in FET devices heavily influences the device performance, which makes it difficult to obtain the intrinsic electric properties of nanomaterials. Dielectric force microscopy (DFM), a contactless method developed recently, can detect the low-frequency dielectric responses of nanomaterials without electric contact, which avoids the influence of electric contact and can be used to study the intrinsic conductivity of nanomaterials. Here we study the influences of surface adsorbates on the conductivity of ZnO nanowires (NWs) by using FET and DFM methods. The conductivity of ZnO NW is much larger in N2 atmosphere than that in ambient environment as measured by FET device, which is further proven by DFM measurement that the ZnO NW exhibits larger dielectric response in N2 environment, and the influence of electrode contacts on measurement can be ruled out. Based on these results, it can be concluded that the adsorbates on ZnO NW surface highly influence the conductivity of ZnO NW rather than the electrode contact. This work also verifies the capability of DFM in measuring electric properties of nanomaterials.

[1]
Y.
Li
,
F.
Qian
,
J.
Xiang
, and
C. M.
Lieber
,
Mater. Today
9
,
18
(
2006
).
[2]
J. T.
Hu
,
T. W.
Odom
, and
C. M.
Lieber
,
Accounts. Chem. Res.
32
,
435
(
1999
).
[3]
[4]
Z. L.
Wang
and
J. H.
Song
,
Science
312
,
242
(
2006
).
[5]
C.
Soci
,
A.
Zhang
,
B.
Xiang
,
S. A.
Dayeh
,
D. P. R.
Aplin
,
J.
Park
,
X. Y.
Bao
,
Y. H.
Lo
, and
D.
Wang
,
Nano Lett.
7
,
1003
(
2007
).
[6]
M.
Law
,
L. E.
Greene
,
J. C.
Johnson
,
R.
Saykally
, and
P.
Yang
,
Nat. Mater.
4
,
455
(
2005
).
[7]
X. W.
Sun
,
J. Z.
Huang
,
J. X.
Wang
, and
Z.
Xu
,
Nano Lett.
8
,
1219
(
2008
).
[8]
H.
Kind
,
H. Q.
Yan
,
B.
Messer
,
M.
Law
, and
P. D.
Yang
,
Adv. Mater.
14
,
158
(
2002
).
[9]
R. D.
Sun
,
A.
Nakajima
,
A.
Fujishima
,
T.
Watanabe
, and
K.
Hashimoto
,
J. Phys. Chem. B
105
,
1984
(
2001
).
[10]
S. E.
Ahn
,
J. S.
Lee
,
H.
Kim
,
S.
Kim
,
B. H.
Kang
,
K. H.
Kim
, and
G. T.
Kim
,
Appl. Phys. Lett.
84
,
5022
(
2004
).
[11]
Y.
Cui
,
X. F.
Duan
,
J. T.
Hu
, and
C. M.
Lieber
,
J. Phys. Chem. B
104
,
5213
(
2000
).
[12]
R.
Martel
,
T.
Schmidt
,
H. R.
Shea
,
T.
Hertel
, and
P.
Avouris
,
Appl. Phys. Lett.
73
,
2447
(
1998
).
[13]
Z. H.
Chen
,
J.
Appenzeller
,
J.
Knoch
,
Y. M.
Lin
, and
P.
Avouris
,
Nano Lett.
5
,
1497
(
2005
).
[14]
D.
Mann
,
A.
Javey
,
J.
Kong
,
Q.
Wang
, and
H. J.
Dai
,
Nano Lett.
3
,
1541
(
2003
).
[15]
S. B.
Liang
,
Z. Y.
Zhang
,
T.
Pei
,
R. M.
Li
,
Y.
Li
, and
L. M.
Peng
,
Nano Res.
6
,
535
(
2013
).
[16]
W.
Lu
,
J.
Zhang
,
Y. S.
Li
,
Q.
Chen
,
X. P.
Wang
,
A.
Hassanien
, and
L. W.
Chen
,
J. Phys. Chem. C
116
,
7158
(
2012
).
[17]
J.
Zhang
,
W.
Lu
,
Y. S.
Li
,
D.
Lu
,
T.
Zhang
,
X.
Wang
, and
L.
Chen
,
J. Phys. Chem. Lett.
3
,
3509
(
2012
).
[18]
Y. S.
Li
,
J.
Ge
,
J. H.
Cai
,
J.
Zhang
,
W.
Lu
,
J.
Liu
, and
L. W.
Chen
,
Nano Res.
DOI 10.1007/s12274-014-0522-z
[19]
O.
Cherniavskaya
,
L. W.
Chen
,
V.
Weng
,
L.
Yuditsky
, and
L. E.
Brus
,
J. Phys. Chem. B
107
,
1525
(
2003
).
[20]
W.
Lu
,
D.
Wang
, and
L. W.
Chen
,
Nano Lett.
7
,
2729
(
2007
).
[21]
W.
Lu
,
Y.
Xiong
,
A.
Hassanien
,
W.
Zhao
,
M.
Zheng
, and
L. W.
Chen
,
Nano Lett.
9
,
1668
(
2009
).
[22]
R.
Wang
,
S. N.
Wang
,
D. D.
Zhang
,
Z. J.
Li
,
Y.
Fang
, and
X. H.
Qiu
,
ACS Nano
5
,
408
(
2011
).
[23]
L. W.
Chen
,
O.
Cherniavskaya
,
A.
Shalek
, and
L. E.
Brus
,
Nano Lett.
5
,
2241
(
2005
).
[24]
D. C.
Coffey
and
D. S.
Ginger
,
Nat. Mater.
5
,
735
(
2006
).
[25]
A.
Bachtold
,
M. S.
Fuhrer
,
S.
Plyasunov
,
M.
Forero
,
E. H.
Anderson
,
A.
Zettl
, and
P. L.
McEuen
,
Phys. Rev. Lett.
84
,
6082
(
2000
).
[26]
L. W.
Chen
,
R.
Ludeke
,
X. D.
Cui
,
A. G.
Schrott
,
C. R.
Kagan
, and
L. E.
Brus
,
J. Phys. Chem. B
109
,
1834
(
2005
).
[27]
W.
Lu
,
Y.
Xiong
, and
L.
Chen
,
J. Phys. Chem. C
113
,
10337
(
2009
).
[28]
H. Y.
Ding
,
Z.
Zhao
,
G. H.
Zhang
,
Y. K.
Wu
,
Z. W.
Gao
,
J. W.
Li
,
K.
Zhang
,
N.
Pan
, and
X. P.
Wang
,
J. Phys. Chem. C
116
,
17294
(
2012
).
[29]
Q.
Chen
,
H.
Ding
,
Y.
Wu
,
M.
Sui
,
W.
Lu
,
B.
Wang
,
W.
Su
,
Z.
Cui
, and
L.
Chen
,
Nanoscale
5
,
4162
(
2013
).
[30]
H.
Ishii
,
N.
Hayashi
,
E.
Ito
,
Y.
Washizu
,
K.
Sugi
,
Y.
Kimura
,
M.
Niwano
,
Y.
Ouchi
, and
K.
Seki
,
Phys. Status. Solidi. A
201
,
1075
(
2004
).
[31]
L. S. C.
Pingree
,
O. G.
Reid
, and
D. S.
Ginger
,
Adv. Mater.
21
,
19
(
2009
).
[32]
F.
Chen
,
Q.
Chen
,
L.
Mao
,
Y.
Wang
,
X.
Huang
,
W.
Lu
,
B.
Wang
, and
L.
Chen
,
Nanotechnology
24
,
484011
(
2013
).
[33]
J.
Zhou
,
Y.
Gu
,
Y.
Hu
,
W.
Mai
,
P. H.
Yeh
,
G.
Bao
,
A. K.
Sood
,
D. L.
Polla
, and
Z. L.
Wang
,
Appl. Phys. Lett.
94
,
191103
(
2009
).
[34]
U.
Ozgur
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Dogan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoc
,
J. Appl. Phys.
98
,
041301
(
2005
).
[35]
S.
Hullavarad
,
N.
Hullavarad
,
D.
Look
, and
B.
Claflin
,
Nanoscale Res. Lett.
4
,
1421
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.