The interacting patterns of the luteolin and guanine have been investigated by using the density functional theory B3LYP method with 6−31+G* basis set. Eighteen stable structures for the luteolin‐guanine complexes have been found respectively. The results indicate that the complexes are mainly stabilized by the hydrogen bonding interactions. Meanwhile, both the number and strength of hydrogen bond play important roles in determining the stability of the complexes which can form two or more hydrogen bonds. Theories of atoms in molecules and natural bond orbital have also been utilized to investigate the hydrogen bonds involved in all the systems. The interaction energies of all the complexes which were corrected by basis set superposition error are 6.04–56.94 kJ/mol. The calculation results indicate that there are strong hydrogen bonding interactions in the luteolin‐guanine complexes. We compared the interaction between luteolin and four bases of DNA, and found luteolin‐thymine was the strongest and luteolin‐adenine was the weakest. The interaction between luteolin and DNA bases are all stronger than luteolin‐water.

1.
Y.
Lee
,
L. R.
Howard
, and
B.
Villalón
,
J. Food Sci.
60
,
476
(
1995
).
2.
C.
Hu
and
D. D.
Kitts
,
J. Agric. Food Chem.
52
,
301
(
2003
).
3.
A.
Serge
,
J. Mol. Struct.: THEOCHEM
856
,
38
(
2008
).
4.
A.
Galicka
,
J.
Nazaruk
, and
M.
Bruczko
,
Inter. J. Mol. Med.
20
,
889
(
2007
).
5.
D. I.
Tsimogiannis
and
V.
Oreopoulou
,
IFSET.
5
,
523
(
2004
).
6.
M.
Leopoldini
,
I. P.
Pitarch
,
N.
Russo
, and
M.
Toscano
,
J. Phys. Chem.
A 108
,
92
(
2004
).
7.
B.
Peng
and
W. D.
Yan
,
J. Chem. Eng. Data
55
,
583
(
2010
).
8.
B. Herwig, R. Ralf, L. Alice, and K. Christine, Patent No: US 6538021B1 (2003).
9.
M.
López‐Lázaro
,
Mini. Rev. Med. Chem.
9
,
31
(
2009
).
10.
W.
Luczaj
and
E.
Skrzydlewska
,
Prev. Med.
40
,
910
(
2005
).
11.
J.
Liu
,
G. A.
Luo
,
Y. M.
Wang
, and
H. W.
Sun
,
Acta. Pharm. Sin.
36
,
74
(
2001
).
12.
L. B.
Qu
,
J. H.
Jun
,
J. J.
Li
, and
R.
Yang
,
J. Instru. Anal.
27
,
79
(
2008
).
13.
L.
Ma
,
S.
Liu
,
F. R.
Song
,
Z. Q.
Liu
, and
S. Y.
Liu
,
Acta Chim. Sin.
70
,
1561
(
2012
).
14.
H. Y.
Wang
,
Y. L.
Zeng
,
S. J.
Zheng
, and
L. P.
Meng
,
Acta. Phys. Chim. Sin.
23
,
1131
(
2007
).
15.
V.
Gomzi
and
J. N.
Herak
,
J. Mol. Struct.: THEOCHEM
629
,
71
(
2003
).
16.
M. K.
Shukla
and
J.
Leszczynski
,
J. Chem. Phys. Lett.
429
,
261
(
2006
).
17.
W. C.
Liang
,
H. R.
Li
,
X. B.
Hu
, and
S. J.
Han
,
J. Chem. Phys.
328
,
93
(
2006
).
18.
S. G.
Zhang
,
H.
Li
, and
P.
Yang
,
J. Mol. Struct.: THEOCHEM
682
,
47
(
2004
).
19.
W. F.
Cai
,
Y.
Zheng
,
L. C.
Li
, and
A. M.
Tian
,
Chin. J. Chem. Phys.
25
,
642
(
2012
).
20.
W. F.
Cai
,
S.
Mao
,
S.
Zhang
,
F.
Cao
,
H.
Zhang
,
L. C.
Li
, and
A. M.
Tian
,
Sci. China. Chem.
54
,
1094
(
2011
).
21.
B. G.
Oliveira
,
J. Chil. Chem. Soc.
56
,
601
(
2011
).
22.
Y. S.
Chen
,
X. L.
Pan
,
H.
Yan
, and
N. H.
Tan
,
Phys. Chem. Chem. Phys.
13
,
7384
(
2011
).
23.
L. Z.
Chen
,
L.
Zhang
,
F. D.
Ren
,
D. L.
Cao
, and
J.
Ren
,
Chin. J. Struct. Chem.
32
,
12
(
2013
).
24.
R. W. F. Bader, Atoms in Molecules: A Quantum Theory, Oxford, UK: Oxford University Press, (1990).
25.
A. E.
Reed
,
F.
Weinhold
, and
L. A.
Curtiss
,
Chem. Rev.
88
,
899
(
1988
).
26.
S. F.
Boys
and
F.
Bernardi
,
J. Mol. Phys.
19
,
553
(
1970
).
27.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Jr. Montgomeryr, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al‐Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C.Gonzalez, and J. A. Pople, Gaussian 03, Revision D.01, Wallingford, CT: Gaussian Inc., (2005).
28.
P. J.
Cox
,
Y.
Kumarasamy
,
L.
Nahar
,
S. D.
Sarker
, and
M.
Shoeb
,
Acta. Cryst.
E 59
,
o975
(
2003
).
29.
U.
Koch
and
P. L. A.
Popelier
,
J. Phys. Chem.
99
,
9747
(
1995
).
30.
P. L. A.
Popelier
,
J. Phys. Chem.
A 102
,
1873
(
1998
).
31.
A.
Kowalska
,
A.
Stobiecka
, and
S.
Wysocki
,
J. Mol. Struct.: THEOCHEM
901
,
88
(
2009
).
32.
A.
Mohajeri
and
F. F.
Nobandegani
,
J. Phys. Chem.
A 112
,
281
(
2008
).
33.
F. Q.
Shi
,
J. Y.
An
,
W.
Li
,
S.
Zhao
, and
J. Y.
Yu
,
Acta Chim. Sin.
62
,
1171
(
2004
).
34.
X. L.
Wang
,
W. F.
Cai
,
Y.
Zheng
,
L. C.
Li
, and
A. M.
Tian
,
Chin. J. Chem.
30
,
727
(
2012
).
35.
Z.
Xiang
,
X.
Wu
,
Y.
Zheng
,
W. F.
Cai
,
L. C.
Li
, and
A. M.
Tian
,
Acta Chim. Sin.
69
,
1980
(
2011
).
36.
L. C.
Li
,
F.
Hu
,
W. F.
Cai
,
A. M.
Tian
, and
N. B.
Wong
,
J. Mol. Struct.: THEOCHEM
911
,
98
(
2009
).
This content is only available via PDF.
You do not currently have access to this content.