n‐Heptane is the most important straight chain paraffin in the fossil‐fuel industry. In this work, pyrolysis behavior of n‐heptane at high temperature is investigated by a series of ReaxFF based reactive molecular dynamics simulations. Temperature effects on the n‐heptane pyrolysis and related products distributions have been detailedly analyzed. The simulation results indicate that the temperature effect is characterized in stages. High temperature can accelerate the decomposition of n‐heptane, but the influence becomes small after it reaches a certain level. According to the different reaction behaviors, pyrolysis of n‐heptane could be divided into three stages. The variation trends of the mass fraction evolution of ethylene (C2H4), C3, and C4 calculated from reactive molecular dynamics simulations are in good agreement with the previous experimental results. The apparent activation energy extracted from the first‐order kinetic analysis is 53.96 kcal/mol and a pre‐exponential factor is 55.34×1013 s−1, which is reasonably consistent with the experimental results.

1.
J. Warnatz, Combustion Chemistry, New York: Springer & Verlag, (1984).
2.
D. J. Huchnall, Chemistry of Hydrocarbon Combustion, New York: Chapman & Hall, (1985).
3.
C. K.
Westbrook
and
F. L.
Dryer
,
Prog. Energ. Combust. Sci.
10
,
1
(
1984
).
4.
T. J.
Held
,
A. J.
Marchese
, and
F. L.
Dryer
,
Combust. Sci. Technol.
123
,
107
(
1997
).
5.
P.
Dagaut
,
M.
Reuillon
, and
M.
Cathonnet
,
Combust. Sci. Technol.
95
,
233
(
1993
).
6.
P.
Dagaut
,
M.
Reuillon
, and
M.
Cathonnet
,
Combust. Sci. Technol.
103
,
315
(
1994
).
7.
P.
Dagaut
,
M.
Reuillon
, and
M.
Cathonnet
,
Combust. Flame
101
,
132
(
1995
).
8.
P.
Dagaur
,
R.
Koch
, and
M.
Cathonnet
,
Combust. Sci. Technol.
122
,
345
(
1997
).
9.
J. M.
Simmie
,
Prog. Energ. Combust. Sci.
29
,
599
(
2003
).
10.
C. K.
Westbrook
,
W. J.
Pitz
,
O.
Herbinet
,
H. J.
Curran
, and
E. J.
Silke
,
Combust. Flame
156
,
181
(
2009
).
11.
F.
Battin‐Leclerc
,
Prog. Energ. Combust. Sci.
34
,
440
(
2008
).
12.
A. E. S.
Green
,
R. R.
Meyreddy
, and
K. M.
Pamidimukkala
,
Int. J. Quantum Chem.
26
,
589
(
1984
).
13.
H. J.
Curran
,
P.
Gaffuri
,
W. J.
Pitz
, and
C. K.
Westbrook
,
Combust. Flame
114
,
149
(
1998
).
14.
M.
Bajus
,
V.
Veselý
,
P. A.
Leclercq
, and
J. A.
Rijks
,
Ind. Eng. Chem. Prod. Res. Dev.
18
,
30
(
1979
).
15.
D. S.
Aribike
and
A. A.
Susu
,
Thermochim. Acta
127
,
247
(
1988
).
16.
J. P.
Chakraborty
and
D.
Kunzru
,
J. Anal. Appl. Pyrolysis
86
,
44
(
2009
).
17.
K. K.
Pant
and
D.
Kunzru
,
J. Anal. Appl. Pyrolysis
36
,
103
(
1996
).
18.
T.
Yuan
,
L.
Zhang
,
Z.
Zhou
,
M.
Xie
,
L.
Ye
, and
F.
Qi
,
J. Phys. Chem.
A 115
,
1593
(
2011
).
19.
P.
Dagaut
and
C.
Togbé
,
Energy Fuels
23
,
3527
(
2009
).
20.
P.
Dagaut
and
C.
Togbé
,
Fuel
89
,
280
(
2010
).
21.
A.
Alexiou
and
A.
Williams
,
Fuel
74
,
153
(
1995
).
22.
R.
Minetti
,
M.
Carlier
,
M.
Ribaucour
,
E.
Therssen
, and
L. R.
Sochet
,
Combust. Flame
102
,
298
(
1995
).
23.
E.
Ranzi
,
P.
Gaffuri
,
T.
Faravelli
, and
P.
Dagaut
,
Combust. Flame
103
,
91
(
1995
).
24.
J.
Ding
,
L.
Zhang
, and
K.
Han
,
Combust. Flame
158
,
2314
(
2011
).
25.
X. L.
Huang
,
C.
Liu
,
J. B.
Huang
, and
H. J.
Li
,
Comput. Theor. Chem.
976
,
51
(
2011
).
26.
C.
Liu
,
J. B.
Huang
,
X. L.
Huang
,
H. J.
Li
, and
Z.
Zhang
,
Comput. Theor. Chem.
964
,
207
(
2011
).
27.
H.
Wang
,
H. F.
Yang
,
X. Q.
Ran
,
Q. Z.
Shi
, and
Z. Y.
Wen
,
J. Mol. Struct.: THEOCHEM
571
,
115
(
2001
).
28.
H.
Wang
,
H. F.
Yang
,
X. Q.
Ran
,
Q. Z.
Shi
, and
Z. Y.
Wen
,
J. Mol. Struct.: THEOCHEM
581
,
187
(
2002
).
29.
H. F.
Yang
,
H.
Wang
,
X. Q.
Ran
,
Q. Z.
Shi
, and
Z. Y.
Wen
,
J. Mol. Struct.: THEOCHEM
618
,
209
(
2002
).
30.
H.
Wang
,
H. F.
Yang
,
X. Q.
Ran
,
Q. Z.
Shi
, and
Z. Y.
Wen
,
J. Mol. Struct.: THEOCHEM
710
,
179
(
2004
).
31.
W.
Hui
,
H. F.
Yang
,
X. Q.
Ran
,
Q. Z.
Shi
, and
Z. Y.
Wen
,
J. Mol. Struct.: THEOCHEM
678
,
39
(
2004
).
32.
W. L.
Feng
,
Y.
Wang
, and
S. W.
Zhang
,
Int. J. Quantum Chem.
62
,
297
(
1997
).
33.
J.
Zhao
,
M. S.
Tang
,
D. H.
Wei
,
C. F.
Zhao
,
W. J.
Zhang
, and
H. M.
Wang
,
Int. J. Quantum Chem.
109
,
1036
(
2009
).
34.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
35.
J.
Chang
,
P.
Lian
,
D. Q.
Wei
,
X. R.
Chen
,
Q. M.
Zhang
, and
Z. Z.
Gong
,
Phys. Rev. Lett.
105
,
188302
(
2010
).
36.
M.
Bühl
,
A.
Chaumont
,
R.
Schurhammer
, and
G.
Wipff
,
J. Phys. Chem.
B 109
,
18591
(
2005
).
37.
A. C. T.
van Duin
,
S.
Dasgupta
,
F.
Lorant
, and
W. A.
Goddard
,
J. Phys. Chem.
A 105
,
9396
(
2001
).
38.
M. F.
Russo
Jr.
, and
A. C. T.
van Duin
,
Nucl. Instru. Methods Phys. Res. Sect.
B 269
,
1549
(
2011
).
39.
A. K.
Bharathi
,
A.
Kamat
, and
A. C. T.
van Duin
,
Comput. Theor. Chem.
987
,
71
(
2012
).
40.
J. P.
Leininger
,
C.
Minot
, and
F.
Lorant
,
J. Mol. Struct.: THEOCHEM
852
,
62
(
2008
).
41.
S. S.
Han
,
J. K.
Kang
,
H. M.
Lee
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Chem. Phys.
123
,
114704
(
2005
).
42.
S. S.
Han
,
A. C. T.
van Duin
,
W. A.
Goddard
, and
H. M.
Lee
,
J. Phys. Chem.
A 109
,
4575
(
2005
).
43.
K.
Chenoweth
,
S.
Cheung
,
A. C. T.
van Duin
,
W. A.
Goddard
, and
E. M.
Kober
,
J. Am. Chem. Soc.
127
,
7192
(
2005
).
44.
Q.
Zhang
,
T.
Çaǧm
,
A.
van Duin
,
W. A.
Goddard
III
,
Y.
Qi
, and
L. G.
Hector
Jr.
,
Phys. Rev.
B 69
,
045423
(
2004
).
45.
A. C. T.
van Duin
,
A.
Strachan
,
S.
Stewman
,
Q.
Zhang
,
X.
Xu
, and
W. A.
Goddard
,
J. Phys. Chem.
A 107
,
3803
(
2003
).
46.
A.
Strachan
,
E. M.
Kober
,
A. C. T.
van Duin
,
J.
Oxgaard
, and
W. A.
Goddard
III
,
J. Chem. Phys.
122
,
054502
(
2005
).
47.
A. C. T.
van Duin
,
Y.
Zeiri
,
F.
Dubnikova
,
R.
Kosloff
, and
W. A.
Goddard
,
J. Am. Chem. Soc.
127
,
11053
(
2005
).
48.
K.
Chenoweth
,
A. C. T.
van Duin
, and
W. A.
Goddard
,
J. Phys. Chem.
A 112
,
1040
(
2008
).
49.
A. J.
Page
and
B.
Moghtaderi
,
J. Phys. Chem.
A 113
,
1539
(
2009
).
50.
N.
Lummen
,
Phys. Chem. Chem. Phys.
12
,
7883
(
2010
).
51.
L.
Liu
,
C.
Bai
,
H.
Sun
, and
W. A.
Goddard
,
J. Phys. Chem.
A 115
,
4941
(
2011
).
52.
K.
Chenoweth
,
A. C. T.
van Duin
,
S.
Dasgupta
, and
W. A.
Goddard
III
,
J. Phys. Chem.
A 113
,
1740
(
2009
).
53.
Q. D.
Wang
,
J. B.
Wang
,
J. Q.
Li
,
N. X.
Tan
, and
X. Y.
Li
,
Combust. Flame
158
,
217
(
2011
).
54.
M.
Garcia‐Perez
,
S.
Wang
,
J.
Shen
,
M.
Rhodes
,
W. J.
Lee
, and
C. Z.
Li
,
Energy Fuels
22
,
2022
(
2008
).
55.
M.
Garcia‐Perez
,
X. S.
Wang
,
J.
Shen
,
M. J.
Rhodes
,
F.
Tian
,
W. J.
Lee
,
H.
Wu
, and
C. Z.
Li
,
Ind. Eng. Chem. Res.
47
,
1846
(
2008
).
56.
F. O.
Rice
,
J. Am. Chem. Soc.
53
,
1959
(
1931
).
57.
A.
Kossiakoff
and
F. O.
Rice
,
J. Am. Chem. Soc.
65
,
590
(
1943
).
58.
X. M.
Cheng
,
Q. D.
Wang
,
J. Q.
Li
,
J. B.
Wang
, and
X. Y.
Li
,
J. Phys. Chem.
A 116
,
9811
(
2012
).
59.
L.
Zhang
,
A. C. T.
van Duin
,
S. V.
Zybin
, and
W. A.
Goddard
III
,
J. Phys. Chem.
B 113
,
10770
(
2009
).
60.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
61.
M.
Murata
,
S.
Saito
,
A.
Amano
, and
S.
Maeda
,
J. Chem. Eng. Jpn.
6
,
252
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.