Amphiphilic lipid molecules can form various micelles depending on not only their molecular composition but also their self‐assembly pathway. In this work, coarse‐grained molecular dynamics simulations have been applied to study the micellization behaviors of mixed dipalmitoylphosphatidylcholine (DPPC)/hexadecylphosphocholine (HPC) droplets. By varying DPPC/HPC composition and the size of lipid droplets, various micelles such as spherical and nonspherical (oblate or prolate) vesicles, disk‐like micelles, double or single ring‐like and worm‐like micelles were observed. It is found that the lipid droplet as an initial state favors forming vesicles and ring‐like micelles due to in situ micellization. Our simulation results demonstrate that using special initial conditions combined with various molecular compositions is an effective way to tune lipid micellar structure.

1.
D. E. Vance and J. E. Vance, Biochemistry of Lipids, Lipoproteins, and Membranes, 4th Edn., Amsterdam: Elsevier, 1 (2002).
2.
X.
Wang
,
Curr. Opin. Plant Biol.
7
,
329
(
2004
).
3.
B. H. Robinson, Self‐Assembly, Amsterdam: IOS Press, 454 (2003).
4.
L. V.
Schäfer
,
D. H.
de Jong
,
A.
Holt
,
A. J.
Rzepiela
,
A. H.
de Vries
,
B.
Poolman
,
J. A.
Killian
, and
S. J.
Marrink
,
Proc. Natl. Acad. Sci. USA
108
,
1343
(
2011
).
5.
K.
Yang
and
Y.
Ma
,
J. Phys. Chem. B
113
,
1048
(
2009
).
6.
Y.
Han
,
H.
Yu
,
H.
Du
, and
W.
Jiang
,
J. Am. Chem. Soc.
132
,
1144
(
2010
).
7.
A. J.
Markvoort
,
P.
Spijker
,
A. F.
Smeijers
,
K.
Pieterse
,
R. A.
van Santen
, and
P. A. J.
Hilbers
,
J. Phys. Chem. B
113
,
8731
(
2009
).
8.
H.
Huang
,
B.
Chung
,
J.
Jung
,
H.
Park
, and
T.
Chang
,
Angew. Chem. Int. Ed.
48
,
4594
(
2009
).
9.
X.
He
and
F.
Schmid
,
Phys. Rev. Lett.
100
,
137802
(
2008
).
10.
S. J.
Marrink
and
A. E.
Mark
,
J. Am. Chem. Soc.
125
,
15233
(
2003
).
11.
P.
Beck
,
M.
Liebi
,
J.
Kohlbrecher
,
T.
Ishikawa
,
H.
Ruüegger
,
P.
Fischer
,
P.
Walde
, and
E.
Windhab
,
Langmuir
26
,
5382
(
2010
).
12.
S. J.
Marrink
,
A. H.
de Vries
, and
D. P.
Tieleman
,
Biochim. Biophys. Acta Biomembr.
1788
,
149
(
2009
).
13.
H. J.
Risselada
and
S. J.
Marrink
,
Phys. Chem. Chem. Phys.
11
,
2056
(
2009
).
14.
S.
Mabrey
and
J. M.
Sturtevant
,
Proc. Natl. Acad. Sci. USA
73
,
3862
(
1976
).
15.
B. R.
Lentz
,
Y.
Barenholz
, and
T. E.
Thompson
,
Biochemistry
15
,
4529
(
1976
).
16.
R.
Koynova
and
M.
Caffrey
,
Biochim. Biophys. Acta Rev. Biomembr.
1376
,
91
(
1998
).
17.
R. F. M.
de Almeida
,
A.
Fedorov
, and
M.
Prieto
,
Biophys. J.
85
,
2406
(
2003
).
18.
S. L.
Veatch
and
S. L.
Keller
,
Biochim. Biophys. Acta Mol. Cell. Res.
1746
,
172
(
2005
).
19.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
de Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
20.
G. W.
Feigenson
,
Biochim. Biophys. Acta Rev. Biomembr.
1788
,
47
(
2009
).
21.
R.
Faller
and
S. J.
Marrink
,
Langmuir
20
,
7686
(
2004
).
22.
G.
Illya
,
R.
Lipowsky
, and
J. C.
Shillcock
,
J. Chem. Phys.
125
,
114710
(
2006
).
23.
S.
Yamamoto
and
S.
Hyodo
,
J. Chem. Phys.
118
,
7937
(
2003
).
24.
G.
Srinivas
,
D. E.
Discher
, and
M. L.
Klein
,
Nature Mater.
3
,
638
(
2004
).
25.
L.
Wang
,
R.
Xu
,
Z.
Wang
, and
X.
He
,
Soft Matter
8
,
11462
(
2012
).
26.
P.
He
,
X.
Li
,
M.
Deng
,
T.
Chen
, and
H.
Liang
,
Soft Matter
6
,
1539
(
2010
).
27.
H.
Noguchi
,
Soft Matter
8
,
8926
(
2012
).
28.
G. J. A.
Sevink
and
A. V.
Zvelindovsky
,
Mol. Simulat.
33
,
405
(
2007
).
29.
Z.
Wang
and
X.
He
,
J. Chem. Phys.
130
,
94905
(
2009
).
30.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
31.
A.
Kukol
,
J. Chem. Theory Comput.
5
,
615
(
2009
).
32.
G. W.
Van
and
H. J.
Berendsen
,
Mol. Simulat.
1
,
173
(
1988
).
33.
H. J.
Berendsen
,
J. P.
Postma
,
G. W.
Van
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
34.
D. V.
Der
,
E.
Lindahl
,
B.
Hess
,
G.
Groenhof
,
A. E.
Mark
, and
H. J. C
Berendsen
,
J. Comput. Chem.
26
,
1701
(
2005
).
35.
J. N.
Israelachvili
,
D. J.
Mitchell
, and
B. W.
Ninham
,
J. Chem. Soc. Faraday Trans.
72
,
1525
(
1976
).
36.
K.
Edwards
and
M.
Almgren
,
J. Colloid. Interf. Sci.
147
,
1
(
1991
).
37.
K.
Edwards
and
M.
Almgren
,
Langmuir
8
,
824
(
1992
).
38.
Y.
Asai
,
Yakugaku Zasshi
124
,
965
(
2004
).
39.
W.
Kong
,
B.
Li
,
Q.
Jin
,
D.
Ding
, and
A.
Shi
,
Langmuir
26
,
4226
(
2010
).
40.
P.
He
,
X.
Li
,
D.
Kou
,
M.
Deng
, and
H.
Liang
,
J. Chem. Phys.
132
,
204905
(
2010
).
41.
S.
Jain
and
F. S.
Bates
,
Science
300
,
460
(
2003
).
42.
J. G. E. M.
Fraaije
and
G. J. A.
Sevink
,
Macromolecules
36
,
7891
(
2003
).
43.
P. V. D.
Schoot
and
J. P.
Wittmer
,
Macromol. Theor. Simul.
8
,
428
(
1999
).
44.
M.
In
,
O.
Aguerre‐Chariol
, and
R.
Zana
,
J. Phys. Chem. B
103
,
7747
(
1999
)
45.
Y.
Jiang
,
J.
Zhu
,
W.
Jiang
, and
H.
Liang
,
J. Phys. Chem. B
109
,
21549
(
2005
).
46.
R. W.
Glaser
,
S. L.
Leikin
,
L. V.
Chernomordik
,
V. F.
Pastushenko
, and
A. I.
Sokirko
,
Biochim. Biophys. Acta Biomembr.
940
,
275
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.