Functionalizing and patterning of the silicon surface can be realized simultaneously by the chemomechanical method. The oxide-coated crystalline silicon (100) surface is scratched with a diamond tool in the presence of aryldiazonium salt (C6H5N2BF4). Scratching activates the silicon surface by removing the passivation oxide layer to expose fresh Si atoms. The surface morphologies before and after chemomechanical reaction are characterized with atomic force microscopy. Time-of-flight secondary ion mass spectroscopy confirms the presence of C6H5 and provides evidence for the formation of self-assembled monolayer (SAM) on silicon surface via Si—C covalent bonds by scratching the silicon in the presence of C6H5N2BF4.C6H5 groups further bond with surface Si atoms via Si—C covalent bonds as confirmed from infrared spectroscopy results. We propose that chemomechanical reaction, which occurred during scratching the silicon surface, produce C6H5 groups from aryldiazonium salt. The relevant adhesion of SAM is measured. It is found that SAM can reduce the adhesion of silicon. The monolayer can be used as anti-adhesion monolayer for micro/nanoelectromechanical systems components under different environments and operating conditions.

r1
Y. Y. Lua, T. L. Niederhauser, B. A. Wacaser, I. A. Mowat, A. T. Woolley, R. C. Davis, H. A. Fishman and M. R. Linford
Langmuir
,
19
,
985
(
2003
).
r2
G. Jiang, T. L. Niederhauser, S. A. Fleming, M. C. Asplund and M. R. Linford
Langmuir
,
20
,
1772
(
2004
).
r3
B. A. Wacaser, M. J. Maughan, I. A. Mowat, T. L. Niederhauser, M. R. Linford and R. C. Davis
Appl. Phys. Lett.
,
82
,
808
(
2003
).
r4
J. I. Owen, T. L. Niederhauser, B. A. Wacaser, M. P. Christenson, R. C. Davis and M. R. Linford
Lab Chip.
,
4
,
553
(
2004
).
r5
B. R. Cannon, T. D. Lillian, S. P. Magleby, L. L. Howell and M. R. Linford
Precis. Eng.
,
29
,
86
(
2005
).
r6
L. Yang, Y. Y. Lua, G. Jiang, B. J. Tyler and M. R. Linford
Anal. Chem.
,
77
,
4654
(
2005
).
r7
T. L. Niederhauser, G. Jiang, Y. Y. Lua, M. J. Dorff, A. T. Woolley, M. C. Asplund, D. A. Berges and M. R. Linford
Langmuir
,
17
,
5889
(
2001
).
r8
L. Yang, Y. Y. Lua, M. Tan, O. A. Scherman, R. H. Grubbs, J. N. Harb, P. C. Davis and M. R. Linfrord
Chem. Mater.
,
19
,
1671
(
2007
).
r9
Y. Y. Lua, T. L. Niederhauser, R. Matheson, C. Bristol, I. A. Mowat, M. C. Asplund and M. R. Linford
Langmuir
,
18
,
4840
(
2002
).
r10
Y. Y. Lua, W. J. J. Fillmore and M. R. Linford
Appl. Surf. Sci.
,
231–232
,
323
(
2004
).
r11
Y. Y. Lua, M. V. Lee, W. J. Fillmore, J. R. Matheson, A. Sathyapalan, M. C. Asplund, S. A. Fleming and M. R. Linford
Angew. Chem. Int. Ed.
,
42
,
4046
(
2003
).
r12
Y. Y. Lua, W. J. J. Fillmore, L. Yang, M. V. Lee, P. B. Savage, M. C. Asplund and M. R. Linford
Langmuir
,
21
,
2093
(
2005
).
r13
M. P. Stewatr, F. Maya and D. V. Kosynikin
J. Am. Chem. Soc.
,
126
,
370
(
2004
).
r14
W. Wang, T. Lee and M. Kamdar
Superlattices Microstructures
,
33
,
217
(
2003
).
r15
A. K. Flatt, B. Chen and M. T. James
J. Am. Chem. Soc.
,
127
,
8918
(
2005
).
r16
L. Houssiau and P. Bertrand
Appl. Surf. Sci.
,
399
,
175
(
2001
).
r17
K. Leufgen, M. Mutter, H. Vogel and W. J. Szymczak
J. Am. Chem. Soc.
,
125
,
8911
(
2003
).
r18
B. Hagenhoff, A. Benninghoven, J. Spinke, M. Liley and W. Knoll
Langmuir
,
9
,
1622
(
1993
).
r19
C. Combellas, F. Kanoufi, J. Pinson and F. I. Podvodica
Langmuir
,
21
,
280
(
2005
).
r20
G. A. Husseini, T. L. Niederhauser and J. G. Peacock
Langmuir
,
19
,
4856
(
2003
).
r21
J. A. Harnisch, D. B. Gazda, J. W. Anderegg and M. D. Porter
Anal. Chem.
,
73
,
3954
(
2001
).
This content is only available via PDF.
You do not currently have access to this content.