We describes a controllable synthesis procedure for growing α-Fe2O3 and Fe3O4 nanowires. High magnetic hematite α-Fe2O3 nanowires are successfully grown on Fe0.5Ni0.5 alloy substrates via an oxide assisted vapor-solid process. Experimental results also indicate that previous immersion of the substrates in a solution of oxalic acid causes the grown nanowires to convert gradually into magnetite (Fe3O4) nanowires. Additionally, the saturated state of Fe3O4 nanowires is achieved as the oxalic acid concentration reaches 0.75 mol/L. The average diameter and length of nanowires expands with an increasing operation temperature and the growth density of nanowires accumulates with an increasing gas flux in the vapor-solid process. The growth mechanism of α-Fe2O3 and Fe3O4 nanowires is also discussed. The results demonstrate that the entire synthesis of nanowires can be completed within 2 h.

r1
P. Alivisatos
Science
,
271
,
933
(
1996
).
r2
S. J. Tans, M. H. Devoret, R. J. A. Groeneveld and C. Dekker
Nature
,
393
,
49
(
1998
).
r3
J. T. Hu, O. Y. Min, P. D. Yang and C. M. Lieber
Nature
,
399
,
48
(
1999
).
r4
J. R. Morber, Y. Ding, M. S. Haluska, Y. Li, J. P. Liu, Z. L. Wang and R. L. Snyder
J. Phys. Chem. B
,
110
,
21672
(
2006
).
r5
B. P. Zhuang, F. C. Lai, L. M. Lin, M. B. Lin, Y. Qu and Z. G. Huang
Chin. J. Chem. Phys.
,
23
,
79
(
2010
).
r6
X. L. Bai, N. Pan, X. P. Wang and H. Q. Wang
Chin. J. Chem. Phys.
,
21
,
81
(
2008
).
r7
L. Y. Zhang, D. S. Xuel, X. F. Xu, A. B. Gui and C. X. Gao
J. Phys.: Condens. Matter.
,
16
,
4541
(
2004
).
r8
C. Terrier, M. Abid, C. Arm, S. Serrano-Guisan, L. Gravier and J. Ansermet
J. Appl. Phys.
,
98
,
086102
(
2005
).
r9
W. P. Zheng, R. D. Zu and L. W. Zhong
Science
,
291
,
1947
(
2001
).
r10
F. Liu, P. J. Cao, H. R. Zhang, J. F. Tian, C. G. Xiao, C. G. Shen, J. Q. Li and H. J. Gao
Adv. Mater.
,
17
,
1893
(
2005
).
r11
H. M. Sun, X. D. Shen, S. Cui and N. Xu
Chin. J. Chem. Phys.
,
20
,
784
(
2007
).
r12
S. G. Yang, H. Zhu, D. L. Yu, Z. Q. Jin, S. L. Tang and Y. W. Du
J. Magn. Magn. Mater.
,
222
,
97
(
2000
).
r13
D. H. Zhang, Z. Q. Liu, S. Hau, C. Li, B. Lei, M. P. Stewart, J. M. Tour and C. W. Zhou
Nano Lett.
,
4
,
2151
(
2004
).
r14
P. J. van der Zaag, P. J. H. Bloemen, J. M. Gaines, R. M. Wolf, P. A. A. van der Heijden, R. J. M. van de Veerdonk and W. J. M. de Jonge
J. Magn. Magn. Mater.
,
211
,
301
(
2000
).
r15
M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y. Murakami and D. Shindo
Adv. Mater.
,
19
,
2290
(
2007
).
r16
Y. C. Lee, Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, Z. L. Wang, Y. W. Lan, C. D. Chen, H. Kurata and S. Isoda
Small
,
3
,
1356
(
2007
).
r17
J. Wang, Q. W. Chen, C. Zeng and B. Y. Hou
Adv. Mater.
,
16
,
137
(
2004
).
r18
Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou and Z. L. Wang
Adv. Funct. Mater.
,
16
,
2243
(
2006
).
r19
N. Du, Y. F. Xu, H. Zhang, C. X. Zhai and D. R. Yang
Nano. Res. Lett.
,
5
,
1295
(
2010
).
r20
M. Chang, N. F. Hsu, C. C. Chung and J. R. Deka
Mater. Lett.
,
64
,
1077
(
2010
).
r21
J. Zhang and N. Li
Oxid. Met.
,
63
,
353
(
2005
).
r22
M. Ohring
The Materials Science of Thin Films
2nd Edn. (
San Diego: Academic Press
) p
357
(
2002
).
This content is only available via PDF.
You do not currently have access to this content.