CuIn1−xGaxSe2 (CIGS) films were prepared by a two-stage method, in which Cu-In-Ga metallic precursors were firstly deposited on unheated Mo-coated soda lime glass substrates by direct current sputtering CuGa (20%Ga) and radio frequency sputtering In targets in an Ar atmosphere, followed by selenization at 520 °C for 40 min in Se vapor. By adjusting the sputtering thickness ratio of surface CuGa (20%Ga) and bottom CuGa (20%Ga) alloy layers in metal precursor, different CIGS thin films were fabricated. Through X-ray diffraction spectra, Raman spectra, local energy dispersive spectrometer, planar- and cross-sectional views of scanning electron microscopy measurements, it revealed that the CIGS thin films from selenization of metal precursor with CuGa:In:CuGa thickness ratio of 7:20:3 (sample-2-se) was of chalcopyrite structure with the preferred (112) orientation, and the grains sizes ranged from 0.5 μm to 2 μm, and sample-2-se had no binary compound phase of In-Se and order defect compound phase. Consequently, the results of illuminated current-voltage curve and quantum efficiency measurements showed that the CIGS film device made from sample-2-se had relative higher photo-electric conversion efficiency (3.59%) and good spectrum response.

r1
Haneman D
Crit. Rev. Solid State Mater. Sci.
,
14
,
337
(
1988
).
r2
Repins I, M Contreras, M Romero, Y Yan, C De-Hart and J Scharf NREL/CP-520-42539 (
2008
).
r3
Mitchell K, C Eberspacher, J Ermer and D Pier in Proc. 20th IEEE Photovoltaic Special Conf. p
1384
(
1988
).
r4
Varvaet A, M Burgelman, I Clemmincr and J Capon in Proc. 20th IEEE Photovoltaic Special Conf. p
480
(
1988
).
r5
Knowles A, H Oumous, M J Carter and R Hill in Proc. 20th IEEE Photovoltaic Special Conf. p
1482
(
1988
).
r6
Luo P F, C F Zhu and G S Jiang
Solid State Commun.
,
146
,
57
(
2008
).
r7
Eberspacher C, K Pauls and J Serra Ncpv Prog. Rev. Meeting, Unisum. vol
857
, (
2003
).
r8
Lincot D, J F Guillemoles, S Taunier, D Guimard, J Sicx-Kurdi, A Chaumont, O Roussel, O Ramdani, C Hubert, J P Fauvarque, N Bodereau, L Parissi, P Panheleux, P Fanouillere, N Naghavi, P P Grand, M Benfarah, P Mogensen and O Kerrec
Solar Energy.
,
77
,
725
(
2004
).
r9
Taunier S, J S Kurdi, P P Grand, A Chomont, O Ramdani, L Parissi, P Panheleux, N Naghavi, C Hubert, M Ben-Farah, J P Fauvarque, J Connolly, O Roussel, P Mogensen, E Mahé, J F Guillemoles, D Lincot and O Kerrec
Thin Solid Films
,
480
,
526
(
2005
).
r10
Romeo N, V Caneveri, G Servegleri, A Bosjo and L Zanotti
Solars Cells
,
16
,
155
(
1986
).
r11
Thronton J A, D G Cornog, R B Hall, S P Shea and J D Meakin
J. Vac. Sci. Technol. A
,
2
,
307
(
1984
).
r12
Song H K, J K Jeong, H J Kim and S K Kim
Thin Solid Films
,
435
,
186
(
2003
).
r13
Calixto M E and P J Sebastian
J. Mater. Sci.
,
33
,
339
(
1998
).
r14
Li W Ph.D Dissertation (
Tianjin: Nan Kai University of China
) (
2006
).
r15
Volobujeva O, M Altosaar, J Raudoja, E Mellikov, M Grossberg, L Kaupmees and P Barvinschi
Solar Energy Mater. Solar Cell
,
93
,
11
(
2009
).
r16
Chen G S, J C Yang, Y C Chan, L C Yang and W Huang
Solar Energy Mater. Solar Cells
,
93
,
1351
(
2009
).
r17
Choi I H and D H Lee
Thin Solid Films
,
515
,
4778
(
2007
).
r18
Ahmed E, A Zegadi, A E Hill and R D Pilkington
J. Mater. Sci.
,
7
,
213
(
1996
).
r19
Kondo K, H Sano and K Sato
Thin Solid Films
,
326
,
83
(
1998
).
r20
Zaretskaya E P, V F Gremenok, V Riede, W Schmitz, K Bente, V B Zalesski and O V Ermakov
J. Phys. Chem. Solids
,
64
,
1989
(
2003
).
r21
Xu C M, X L Xu, J Xu, X J Yang, J Zuo, N Kong, W H Huang and H T Liu
Semicond. Sci. Technol.
,
19
,
1201
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.