There has been emerging needs for the quantitative polarization analysis for the Coherent Anti-stokes Raman Spectroscopy and Coherent Anti-stokes Hyper-raman Spectroscopy, as the experimental studies with coherent anti-stokes raman spectroscopy and coherent anti-stokes hyper-raman spectroscopy for the interface and membrane studies being growing. Recently we have demonstrated that orientational analysis of linear and nonlinear spectroscopy from the ordered molecular system, such as molecular interfaces and films, can be carried out with the formulation of the orientational function in simple functional forms. Applications of such formulation for the second order spectroscopy, namely, the Second Harmonic Generation and Sum Frequency Generation Vibrational Spectroscopy, have helped to understand spectral and orientational details of the molecular interfaces and films. In order to employ this formulation for the higher order coherent nonlinear spectroscopy, the detailed expressions of the experimental observables and the macroscopic susceptibility/microscopic polarizability tensors for the third and fourth-order nonlinear spectroscopy for the interface or film is presented with the rotational symmetry. General expressions for the typical third and fourth order spectroscopy, such as the Third Harmonic Generation, the degenerated coherent anti-stokes raman spectroscopy, the Fourth Harmonic Generation and the degenerated coherent anti-stokes hyper-raman spectroscopy, are presented for their future applications. The advantages and limitations of the third and fourth order spectroscopic techniques are also discussed.

r1
R H Tredgold,
Order in Thin Organic Films
,
New York: Cambridge University Press
(
1994
).
r2
G Roberts,
Langmuir-Blodgett Films
,
New York: Kluwar Academic Publishers
(
1990
).
r3
P G de Gennes and J Prost,
Physics of Liquid Crystal, 2nd Ed.
,
Oxford: Oxford University Press
, (
1995
).
r4
K Busch, S Lölkes, R B Wehrspohn, and H Föll,
Photonic Crystals: Advances in Design, Fabrication, and Characterization
,
New York: Wiley-VCH
(
2004
).
r5
H F Wang
Chin. J. Chem. Phys.
,
17
,
362
(
2004
).
r6
J Michl and E W Thulstrup,
Spectroscopy with Polarized Light:Solute Alignment by Photoselection, Liquid Crystal, Polymers, and Membranes
,
New York: John Wiley & Sons
(
1995
).
r7
K B Eisenthal
Chem. Rev.
,
96
,
1343
(
1996
).
r8
Y R Shen
Nature
,
337
,
519
(
1989
).
r9
H F Wang, W Gan, R Lu, Y Rao, and B H Wu
Int. Rev. Phys. Chem.
,
24
,
191
(
2005
).
r10
W K Zhang, H F Wang, and D S Zheng
Phys. Chem. Chem. Phys.
,
8
,
4041
(
2006
).
r11
A J Moad and G J Simpson
J. Phys. Chem. A
,
109
,
1316
(
2005
).
r12
S H Lee, J Wang, S Krimm, and Z Chen
J. Phys. Chem. A
,
110
,
7035
(
2006
).
r13
C Hirose, N Akamatsu, and K Domen
Appl. Spectr.
,
46
,
1051
(
1992
).
r14
Y Rao, Y S Tao, and H F Wang
J. Chem. Phys.
,
119
,
5226
(
2003
).
r15
R Lu, W Gan, B H Wu, H Chen, and H F Wang
J. Phys. Chem. B
,
108
,
7297
(
2004
).
r16
R Lu, W Gan, B H Wu, H Chen, and H F Wang
J. Phys. Chem. B
,
109
,
14118
(
2005
).
r17(a)
R Lu, W Gan, and H F Wang
Chin. Sci. Bull.
,
48
,
2183
(
2003
).
r17(B)
R Lu, W Gan, and H F Wang
Chin. Sci. Bull.
,
49
,
899
(
2004
).
r18
W Gan, B H Wu, H Chen, Y Guo, and H F Wang
Chem. Phys. Lett.
,
406
,
467
(
2005
).
r19
W Gan, B H Wu, Z Zhang, Y Guo, and H F Wang
J. Phys. Chem. C
,
111
,
8716
(
2007
).
r20
W Gan, Z Zhang, R R Feng, and H F Wang
J. Phys. Chem. C
,
111
,
8726
(
2007
).
r21
W Gan, D Wu, Z Zhang, R R Feng, and H F Wang
J. Chem. Phys.
,
124
,
114705
(
2006
).
r22
W K Zhang, D S Zheng, Y Y Xu, H T Bian,Y Guo, and H F Wang
J. Chem. Phys.
,
123
,
224713
(
2005
).
r23
W Gan, D Wu, Z Zhang, Y Guo, and H F Wang
Chin. J. Chem. Phys.
,
19
,
20
(
2006
).
r24
H Chen, W Gan, B H Wu, D Wu, Z Zhang, and H F Wang
Chem. Phys. Lett.
,
408
,
284
(
2005
).
r25
H Chen, W Gan, R Lu, Y Guo, and H F Wang
J. Phys. Chem. B
,
109
,
8064
(
2005
).
r26
H Chen, W Gan, B H Wu, D Wu, Y Guo, and H F Wang
J. Phys. Chem. B
,
109
,
8053
(
2005
).
r27
A B Harvey,
Chemical Applications of Nonlinear Raman Spectroscopy
,
New York: Academic Press
(
1981
).
r28
G L Eesley,
Coherent Raman Spectroscopy
,
New York: Pergamon Press
(
1981
).
r29
A Zumbusch, G R Holtom, and X S Xie
Phys. Rev. Lett.
,
82
,
4142
(
1999
).
r30
J X Cheng, S Pautot, D A Weitz, and X S Xie
Proc. Natl. Acad. Sci.
,
100
,
9826
(
2003
).
r31
J X Cheng, L D Book, and X S Xie
Opt. Lett.
,
26
,
1341
(
2001
).
r32
J X Cheng and X S Xie
J. Phys. Chem. B
,
108
,
827
(
2004
).
r33
J X Cheng, A Volkmer, and X S Xie
J. Opt. Soc. Am. B
,
19
,
1363
(
2002
).
r34
X L Nan, A M Tonary, A Stolow, X S Xie, and J P Pezacki
Chem. Bio. Chem.
,
7
,
1895
(
2006
).
r35
S Fujiyoshi, T A Ishibashi, and H Onishi
J. Phys. Chem. A
,
108
,
11165
(
2004
).
r36
S Fujiyoshi, T A Ishibashi, and H Onishi
J. Phys. Chem. B
,
108
,
10636
(
2004
).
r37
S Fujiyoshi, T A Ishibashi, and H Onishi
J. Phys. Chem. B
,
109
,
8557
(
2005
).
r38
S Fujiyoshi, T A Ishibashi, and H Onishi
J. Phys. Chem. B
,
110
,
9571
(
2006
).
r39
S Yamaguchi and T Tahara
J. Phys. Chem. B
,
109
,
24211
(
2005
).
r40
M Yang, J Kim, Y Jung, and M Cho
J. Chem. Phys
,
108
,
4013
(
1998
).
r41
Minhaeng Cho
J. Chem. Phys.
,
109
,
2194
(
1998
).
r42
H Wu, W K Zhang, W Gan, Z F Cui, and H F Wang
Chin. J. Chem. Phys.
,
19
,
187
(
2006
).
r43
H Wu, W K Zhang, W Gan, Z F Cui, and H F Wang
J. Chem. Phys.
,
125
,
133203
(
2006
).
r44
G B Arfken and H J Weber,
Mathematical Methods for Physicists, 4th Ed.
,
New York: Academic Press
, Chapter 12 (
1995
).
r45
K Cimatu and S Baldelli
J. Am. Chem. Soc.
,
128
,
16016
(
2006
).
r46
K Cimatu and S Baldelli
J. Phys. Chem. B
,
110
,
1807
(
2006
).
r47
H Goldstein,
Classical Mechanics
,
Massachusetts: Addison-Wesley Publishing Company
,
147
(
1980
).
r48
Y R Shen,
The Principles of Nonlinear Optics
,
New York: John Wiley& Sons
(
1984
).
r49
R W Boyd,
Nonlinear Optics, 2nd Ed.
,
New York: Academic Press
(
2002
).
r50
A G Lambert, P B Davies, and D J Neivandt
Appl. Spectr. Rev.
,
40
,
103
(
2005
).
r51
N Bloembergen and P S Pershen
Phys. Rev.
,
128
,
606
(
1962
).
r52
D M Jonas
Annu. Rev. Phys. Chem.
,
54
,
425
(
2003
).
r53
M Dantus
Annu. Rev. Phys. Chem.
,
52
,
639
(
2001
).
r54
T A W Wasserman, P H Vaccaro, and B R Johnson
J. Chem. Phys.
,
108
,
7713
(
1998
).
r55
A Y Chikishev, G W Lucassen, N I Koroteev, C Otto, and J Grevet
Biophys. J.
,
63
,
976
(
1992
).
r56
P A Franken and J F Ward
Rev. Mod. Phys.
,
35
,
23
(
1963
).
r57
C A Dailey, B J Burke, and G J Simpson
Chem. Phys. Lett.
,
390
,
8
(
2004
).
r58
D K Hore, D K Beaman, D H Parks, and G L Richmond
J. Phys. Chem. B
,
109
,
16846
(
2005
).
r59
C Hirose, N Akamatsu, and K Domen
J. Chem. Phys.
,
96
,
997
(
1992
).
r60
C Hirose, H Yamamoto, N Akamatsu, and K Domen
J. Phys. Chem.
,
97
,
10064
(
1993
).
r61
X H Chen, X F Han, Y X Weng, and J Y Zhang
Appl. Phys. Lett.
,
89
,
061127
(
2006
).
r62
P Fita, Y Stepanenko, and C Radzewicz
Appl. Phys. Lett.
,
86
,
021909
(
2005
).
r63
J Y Zhang, A P Shreenath, M Kimmel, E Zeek,R Trebino, and S Link
Opt. Express
,
11
,
601
(
2003
).
r64
J Y Zhang, C K Lee, J Y Huang, and C L Pan
Opt. Express
,
12
,
574
(
2004
).
This content is only available via PDF.
You do not currently have access to this content.