The reaction kinetics of cyanomethylidyne radical, CCN(X2), with a series of primary alcohols were studied at about 1.33 kPa total pressure and room temperature using pulsed laser photolysis/laser-induced fluorescence (LP/LIF) technique. The CCN radical was produced via laser photolysis of CCl3CN with the fourth harmonic output of a Nd: YAG laser (266 nm). The relative concentration of the CCN(X2) radical was monitored by LIF in the (0, 0) band of the CCN(A2X2) transition at 470.9 nm. Under pseudo-first-order conditions, the reaction rate constants of CCN(X2) with a series of primary alcohol molecules (n-CnH2n+1OH, n=1-6) were determined by measuring the time evolution of the relative concentration of CCN(X2i). The measured rate constants increased monotonously with the number of carbon atoms in the alcohols, and the values for reactions of CCN(X2) with alcohols were larger than those for reactions of CCN(X2) with alkanes (C1-C5). Based on the bond dissociation energies and linear free energy correlations, it was believed that the reactions of CCN(X2) with alcohols proceeded via a hydrogen abstraction mechanism that was analogous to CCN(X2) with alkanes. The experimental results indicated that the H atoms on the C-H bonds were activated at the presence of the OH group in alcohol molecules and the hydrogen abstraction from the C-H bonds in the alcohol molecules was the dominant reaction pathway. The relation between the rate constants and the long-distance attractive potentials between the CCN radical and the alcohol molecules was discussed.

r1
T J Millar and E Herbst
Astron. Astrophys.
,
288
,
561
(
1994
).
r2
P Thaddeus, M C McCarthy, C A Gottlieb and W Chen
Faraday Discuss.
,
109
,
121
(
1998
).
r3
R L Dickman, W B Somerville, D C B Whittet, D McNally and J C Blades
Astrophys. J. Suppl.
,
53
,
55
(
1983
).
r4
M Gue'lin and P Thaddeus
Astrophys. J. Lett.
,
212
,
L81
(
1977
).
r5
Y Ohshima and Y Endo
J. Mol. Spectrosc.
,
172
,
225
(
1995
).
r6
D A Michael, M E Kenneth, A G David and M B John
J. Mol. Spectrosc.
,
201
,
18
(
2000
).
r7
M Tulej, D A Kirkwood, M Pachkov and J P Maier
Astrophys. J.
,
506
,
L69
(
1998
).
r8
J P Maier, G A H Walker and D A Bohlender
Astrophys. J.
,
602
,
286
(
2004
).
r9
J Cernicharo, M Guélin and J R Pardo
Astrophys. J.
,
615
,
L145
(
2004
).
r10
R Kolos
Chem. Phys. Lett.
,
299
,
247
(
1999
).
r11
J A Miller and C T Bowman
Prog. Energy Combust Sci.
,
15
,
287
(
1989
).
r12
M E Jacox
J. Mol. Spectrosc.
,
71
,
369
(
1978
).
r13
R Renner
Z. Phys.
,
92
,
172
(
1934
).
r14
J T Hougen
J. Chem. Phys.
,
36
,
519
(
1962
).
r15
M D Allen, K M Evenson, D A Gillett and J M Brown
J. Mol. Spectrosc.
,
201
,
18
(
2000
).
r16
A J Merer and D N Travis
Can. J. Phys.
,
43
,
1795
(
1965
).
r17
M Kakimoto and T Kasuya
J. Mol. Spectrosc.
,
94
,
380
(
1982
).
r18
K Hakuta and H Uehara
J. Chem. Phys.
,
78
,
6484
(
1983
).
r19
C R Brazier, L C O'Brien and P F Bernath
J. Chem. Phys.
,
86
,
3078
(
1987
).
r20
N Oliphant, A Lee, P F Bernath and C R Brazier
J. Chem. Phys.
,
92
,
2244
(
1990
).
r21
K Kawaguchi, T Suzuki, S Saito, E Hirota and T Kasuya
J. Mol. Spectrosc.
,
106
,
320
(
1984
).
r22
K Hakuta, H Uehara, K Kawaguchi, T Suzuki and T Kasuya
J. Chem. Phys.
,
79
,
1094
(
1983
).
r23
M Fehér, C Salud and J P Maier
J. Mol. Spectrosc.
,
145
,
246
(
1991
).
r24
D A Gillett and J M Brown
Can. J. Phys.
,
72
,
1001
(
1994
).
r25
S A Beaton, D A Gillett, J M Brown, M Fehér and A Rohrbacher
J. Mol. Spectrosc.
,
209
,
60
(
2001
).
r26
Y Ohshima and Y Endo
J. Mol. Spectrosc.
,
172
,
225
(
1995
).
r27
C J Hu, Z Q Zhu, L S Pei, Q Ran, Y Chen, C X Chen and X X Ma
J. Chem. Phys.
,
118
,
5408
(
2003
).
r28
Z Q Zhu, Z Q Zhang, C S Huang, L S Pei, C X Chen and Y Chen
J. Phys. Chem. A
,
107
,
10288
(
2003
).
r29
C S Huang, Z Q Zhu, Y Xin , L S Pei, C X Chen and Y Chen
J. Chem. Phys.
,
120
,
2225
(
2004
).
r30
J S Gaffney and S Z Levine
Int. J. Chem. Kinet.
,
11
,
1197
(
1979
).
r31
N R Greiner
J. Chem. Phys.
,
53
,
1070
(
1970
).
r32
R Atkinson
Chem. Rev.
,
86
,
69
(
1986
).
r33
B Ruscic, M Litorja and R L Asher
J. Phys. Chem. A
,
103
,
8625
(
1999
).
r34
K M Ervin and V F Deturi
J. Phys. Chem. A
,
106
,
9947
(
2002
).
r35
B Ruscic and J Berkowitz
J. Phys. Chem.
,
97
,
11451
(
1993
).
r36
P W Seaking, M J Pilling, J T Niiranen, D Gutman and L N Krasnoperov
J. Phys. Chem.
,
96
,
9847
(
1992
).
r37
J T Herron
J. Phys. Chem. Ref. Data
,
17
,
967
(
1988
).
r38
R L Failes, D L Singleton, G Paraskevopoulos and R S Irwin
Int. J. Chem. Kinet.
,
14
,
371
(
1982
).
r39
R Atkinson
Int. J. Chem. Kinet.
,
19
,
800
(
1982
).
r40
H L Bethel, R Atkinson and J Arey
Int. J. Chem. Kinet.
,
33
,
310
(
2001
).
r41
X C Li, N Sayah and W M Jackson
Acta Phys. Chim. Sin.
,
4
,
205
(
1998
).
r42
P W Fairchild,G P Smith and D R Crosley
J. Chem. Phys.
,
79
,
1795
(
1983
).
r43
J O Hirschfelder, C F Curtiss and R B Bird,
Molecular Theory of Gases and Liquids
, Ch1,
New York:Wiley
(
1954
).
r44
R C Weast,
CRC Handbook of Chemistry and Physics, 80th Ed
.
Boca Raton: CRC
(
1999-2000
).
r45
K Yamashita and K Morokuma
Chem. Phys. Lett.
,
140
,
345
(
1987
).
r46
W Gabriel, E A Reinsch, P Rosmus
Chem. Phys. Lett.
,
231
,
13
(
1994
).
r47
Neil Isaacs,
Physical Organic Chemistry, 2nd Ed.
,
London: Addison Wesley Longman Limited
, Ch1,
41
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.