A versatile metal-organic chemical vapor deposition (MOCVD) system was designed and constructed. Copper ilms were deposited on silicon (100) substrates by chemical vapor deposition (CVD) using Cu(hfac)2 as a recursor. The growth of Cu nucleus on silicon substrates by H2 reduction of Cu(hfac)2 was studied by atomic force microscopy and scanning electron microscopy. The growth mode of Cu nucleus is initially olmer-Weber mode (island), and then transforms to Stranski-Rastanov mode (layer-by-layer plus island). The mechanism of Cu nucleation on silicon (100) substrates was further investigated by X-ray photoelectron spectroscopy. From Cu2p, O1s, F1s, Si2p patterns, the observed C=O, OH and CF3/CF2 should belong to u(hfac) formed by the thermal dissociation of Cu(hfac)2. H2 reacts with hfac on the surface, producing H. With its accumulation, OH reacts with hfac, forming HO-hfac, and desorbs, meanwhile, the copper xide is reduced, and thus the redox reaction between Cu(hafc)2 and H2 occurs.

r1
Chang C. Y. and S. M. Sze
ULSI. Technology
(
New York: McGraw-Hill
)
371
(
1996
).
r2
Gandikota S., S. Voss, R. Tao, A. Duboust, D. Cong, L. Y. Chen, S. Ramaswami and D. Carl
Microelectr. Engng.
,
50
, (1-4)
501
(
2000
).
r3
Kim S., J. M. Park and D. J. Choi
Thin Solid Films
,
320
,
95
(
1998
).
r4
Bollmann D., R. Merke and A. Klumpp
Microelectr. Eng.
,
37/38
,
105
(
1997
).
r5
S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang and S. J. Lin
J. Electrochem. Soc.
,
151
,
C81
(
2004
).
r6
H. H. Hsu, K. H. Lin, S. J. Lin and J. W. Yeh
J. Electrochem. Soc.
,
148
,
C47
(
2001
).
r7
Ogurtani T. O. and E. E. Oren
J. Appl. Phys.
,
96
,
7246
(
2004
).
r8
Paul S. P.
Nature
,
406
,
1023
(
2000
).
r9
T. L. Alford
Thin Solid Films
,
262
, (1-2)
VII
(
1995
).
r10
Zheng B., G. Braeckelmann, K. Kujawski, I. Lou, S. Lane and A. E. Kaloyeros
J. Electrochem. Soc.
,
142
,
3896
(
1995
).
r11
Kim D. H., R. H. Wentorf and W. N. Gill
J. Electrochem. Soc.
,
140
,
3267
(
1993
).
r12
Mukhopadhyay S., K. Shalini, R. Lakshmi, A. Devi and S. A. Shivashankar
Surf. Coat. Tech.
,
150
,
205
(
2002
).
r13
Shi F., X. Ye, W. Yao and L. Cao
Chin. J. Chem. Phys.
,
11
, (3)
261
(
1998
).
r14
Puurunen R. L.
Chem. Vap. Deposition
,
10
,
159
(
2004
).
r15
Frank F. C. and J. H. van der Merwe
Proc. R. Soc. London Ser. A
,
198
,
205
(
1949
).
r16
Volmer M. and A. Z. Weber
Phys. Chem.
,
119
,
277
(
1926
).
r17
Stranski I. N. and V. L. Krastanov
Akad. Wiss. Lit. Mainz Math. Naturwiss K1. Kar-August-Forest Lec.
,
146
,
797
(
1939
).
r18
Roland C. and G. H. Gilmer
Phys. Rev. B
,
47
,
16286
(
1993
).
r19
Norman J. A. T., D. A. Roberts, A. K. Hochberg, P. Smith, G. A. Petersen, J. E. Parmeter, C. A. Apblett and T. R. Omstead
Thin Solid Films
,
262
,
46
(
1995
).
r20
Qi S., J. Lv, Y. Zhang, S. Yang, Y. Wang and J. Wang
Chin. J. Chem. Phys.
,
14
,
459
(
2001
).
r21
Ren D., W. Wang, Y. Li and R. Yan
Chin. J. Chem. Phys.
,
17
,
87
(
2004
).
r22
Wang J. Q.
XPS/AES/UPS
(
Beijing: National Defense Industry Press
) p
519
(
1992
).
r23
Borgharkar N. S., G. L. Gri±n, A. James and A. W. Maverick
Thin Solid Films
,
320
,
86
(
1998
).
r24
Hanaoka K., K. Tachibana, H. Ohnishi
Thin Solid Films
,
262
,
209
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.