Skip Nav Destination
2023 Papers with Best Practices in Data Sharing and Comprehensive Background Review
Sharing research data accelerates the exchange of scientific data and the pace of science, by enabling validation of results, access to datasets, and encourages reuse of data for future studies. Towards fostering a culture of open data, APL Machine Learning requires all data, code, methods, and models should be documented and described either in the main text of the article or supporting information to provide the research community with enough transparency and detail to effectively replicate the findings.
This collection highlights papers published in APL Machine Learning in 2023 that showcase well-documented data, code, and supplementary materials or provide comprehensive and structured background review.

ARTICLES
Yi Zhuang; Du Yin; Lang Wu; Gaoqiang Niu; Fei Wang
ARTICLES
Experiment-based deep learning approach for power allocation with a programmable metasurface
Open Access
Jingxin Zhang; Jiawei Xi; Peixing Li; Ray C. C. Cheung; Alex M. H. Wong; Jensen Li
ARTICLES
A cloud platform for sharing and automated analysis of raw data from high throughput polymer MD simulations
Open Access
Tian Xie; Ha-Kyung Kwon; Daniel Schweigert; Sheng Gong; Arthur France-Lanord; Arash Khajeh; Emily Crabb; Michael Puzon; Chris Fajardo; Will Powelson; Yang Shao-Horn; Jeffrey C. Grossman
ARTICLES
Aakash Patil; Jonathan Viquerat; Elie Hachem
ARTICLES
Nathan Leroux; Danijela Marković; Dédalo Sanz-Hernández; Juan Trastoy; Paolo Bortolotti; Alejandro Schulman; Luana Benetti; Alex Jenkins; Ricardo Ferreira; Julie Grollier; Frank Alice Mizrahi
ARTICLES
Simulation of the effect of material properties on yttrium oxide memristor-based artificial neural networks
Open Access
F. Aguirre; E. Piros; N. Kaiser; T. Vogel; S. Petzold; J. Gehrunger; T. Oster; K. Hofmann; C. Hochberger; J. Suñé; L. Alff; E. Miranda
PERSPECTIVES
Materials cartography: A forward-looking perspective on materials representation and devising better maps
Open Access
Steven B. Torrisi; Martin Z. Bazant; Alexander E. Cohen; Min Gee Cho; Jens S. Hummelshøj; Linda Hung; Gaurav Kamat; Arash Khajeh; Adeesh Kolluru; Xiangyun Lei; Handong Ling; Joseph H. Montoya; Tim Mueller; Aini Palizhati; Benjamin A. Paren; Brandon Phan; Jacob Pietryga; Elodie Sandraz; Daniel Schweigert; Yang Shao-Horn; Amalie Trewartha; Ruijie Zhu; Debbie Zhuang; Shijing Sun
ARTICLES
A machine learning-based prediction of crystal orientations for multicrystalline materials
Open Access
Kyoka Hara; Takuto Kojima; Kentaro Kutsukake; Hiroaki Kudo; Noritaka Usami
ARTICLES
Label free identification of different cancer cells using deep learning-based image analysis
Open Access
Karl Gardner; Rutwik Joshi; Md Nayeem Hasan Kashem; Thanh Quang Pham; Qiugang Lu; Wei Li
ARTICLES
Yu-Chuan Hsu; Markus J. Buehler
ARTICLES
Stoichiometric growth of SrTiO3 films via Bayesian optimization with adaptive prior mean
Open Access
Yuki K. Wakabayashi; Takuma Otsuka; Yoshiharu Krockenberger; Hiroshi Sawada; Yoshitaka Taniyasu; Hideki Yamamoto
ARTICLES
Finn H. O’Shea; Semin Joung; David R. Smith; Ryan Coffee
ARTICLES
Alexandra Bruefach; Colin Ophus; M. C. Scott
ARTICLES
Dominique J. Kösters; Bryan A. Kortman; Irem Boybat; Elena Ferro; Sagar Dolas; Roberto Ruiz de Austri; Johan Kwisthout; Hans Hilgenkamp; Theo Rasing; Heike Riel; Abu Sebastian; Sascha Caron; Johan H. Mentink
ARTICLES
Carolin A. Rickert; Manuel Henkel; Oliver Lieleg
PERSPECTIVES
P. Mannocci; M. Farronato; N. Lepri; L. Cattaneo; A. Glukhov; Z. Sun; D. Ielmini