Skip to Main Content
Skip Nav Destination
By
Robert J. Nordstrom
Robert J. Nordstrom
Deputy Associate Director DCTD, Branch Chief,
Image Guided Intervention CIP, Cancer Imaging Program
, 9609 Medical Center Dr., Rockville, MD,
USA
Search for other works by this author on:

Quantitative Imaging in Medicine: Applications and Clinical Translation presents a detailed exploration of the potential applications of quantitative imaging. This timely book provides a thorough introduction to the applications of quantitative imaging standards and tools in various imaging modalities as well as individual organ sites. It is the first book-length compendium to focus on the clinical adaption and translational potential of novel imaging methods.

This important book:

  • Addresses the pathways of clinical translation, particularly as it relates to imaging response to therapy

  • Provides a detailed discussion of different imaging modalities and individual organs

  • Focuses on analytical and clinical validation and serves as a guidebook to those seeking to develop new imaging standards

Radiologists, oncologists, imaging scientists, and computer scientists will find this book invaluable. It also serves as a comprehensive resource for teaching the fundamentals to trainees in radiology, medical physics, and imaging studies.

This book is dedicated to the quantitative imaging research efforts and memories of Laurence P. Clarke, NCI, and Edward F. Jackson, University of Wisconsin. Both were instrumental in the advancement of quantitative imaging throughout their careers, and the field is strong today because of their insight and leadership.

The editor acknowledges the enormous administrative effort from Dr. Kara Rader in making this book a reality.

In Nordstrom (2021), we presented the background and building blocks associated with quantitative imaging (QI) in the medical arena. The cornerstone to accepted utility for QI is the application of standards to the entire imaging process. Everything, from the data collection process through to final image display, must be under the control of standard operating procedures (SOPs); Chap. 2, by Kinahan et al., and Chap. 3, by Guimaraes, of Nordstrom (2021) emphasized this necessity. Standards are an important part of multisite clinical trials, where detailed protocols are established to harmonize results across the collaborating sites. Although, for these cases, compliance to SOPs is relatively easy to enforce, this is much less the case in standard-of-care community practice. Reluctance to comply to SOPs is a drawback to rapid acceptance of QI methods across all medical practice.

The tools typically used in QI were then presented. The RECIST method was an early contributor to the movement from qualitative evaluation of medical images toward providing some level of quantitative results. This longest-dimension measurement of tumors was successful in predicting patient outcome for some tumors, but ran into difficulty with more diffuse or fibrous images of tumors. However, other methods for extracting quantitative information from medical images have become popular and productive in recent years. For example, radiomics and artificial intelligence (AI) are now at the forefront of image analysis. The potential of these methods was presented in Nordstrom (2021), and is enlarged upon in various chapters of this book.

However, the ultimate value of these tools rests on their ability to determine exactly where the disease is located within the image, and to define its margins. The process of image segmentation is so critical to QI that it was given its own chapter in Nordstrom (2021). The process of defining the disease location precisely, with accurate boundaries, is more difficult than we might think. The boundaries of many tumors and organs can be indistinct, and can share tissue properties with the background. Partial volume effects can further blur these boundaries. Yet, the importance of making accurate boundary locations is critical to accurate QI methods that extract information for processing.

Nordstrom (2021) ends with the recognition that QI is not a single application of a specific method to a single image or series of medical images. It is a process of methods, each with its own set of SOPs and input/output formats. The creation of pipelines is a way to link methods together in a purpose-driven package. The pipeline concept allows for flexible selection and configuration of processing steps, bringing QI closer to user acceptability. It also allows for rapid and consistent processing of imaging in bulk, increasing the throughput of image processing in clinical trials.

This book takes the principles and caveats of QI presented in Nordstrom (2021) and applies them in a number of ways. First, QI is presented as part of the various imaging modalities used in the clinic. Magnetic resonance imaging (MRI), positron emission tomography (PET), computed tomography (CT), and ultrasound (US) are clinical imaging methods where QI is making inroads. These imaging modalities are presented, with emphasis of the role of QI in each.

But emphasis on modalities is only one way to highlight the roles of QI in medicine. Looking at various organ sites to see how QI is applied, where the difficulties lie, and how they are being overcome, is yet another way of spotlighting the role of QI in medicine. Different chapters focus on the breast, brain, lung, bladder, and head and neck, to demonstrate the ways that QI is used in each.

Of course, it is not possible to separate completely the two approaches for discussing QI in medicine. A discussion of brain imaging will naturally bring up the various forms of MRI, and, conversely, a discussion of QI in MRI will focus, at least in part, on brain imaging. The goal in this book is to be as inclusive as possible of all aspects of QI in medicine, without worrying about the inevitable overlaps. As a result, the reader is encouraged to look at both the image modality chapters and the organ site chapters for a complete comprehension of QI in specific areas.

The lingering question regarding QI in medicine is, what is its clinical utility? Yet this question remains, despite all the definitions of QI and imaging biomarkers, all the presentations of algorithms and tools, and all the evidence that QI shows promise in a number of tumor sites. It is certainly one thing to demonstrate abilities in a research setting, but it is quite another to demonstrate clinical utility. There is no doubt that QI comes to the clinical environment carrying a lot of baggage, in the form of additional SOPs, quality assurance necessities, and reporting requirements. So, while there may be areas where the automation or semi-automation of image analysis can be attractive, the extra burden of standards and quality control can negate that attractiveness.

A constant issue from the radiologist community is concern over the validation of QI results. Without robust validation of algorithms, the weight of procedures and requirements associated with QI will be greater than the promise of more efficient clinical decision support. This is especially true when advancing AI or deep learning methods that are not supported by physiologic or metabolic models of disease. After all, in the words of Arthur C. Clarke, “Any sufficiently complex technology is indistinguishable from magic,” and radiologists are not going to begin relying on magic for patient diagnoses. This means that QI must prove itself through the process of validation in clinical trials.

To date, QI has established a firm foothold in clinical trial decision support. It will not go away. The question is, how rapidly will it be able to grow and expand in the clinical environment. This book, focusing on the applications of QI, is a strong indication that, although the acceptance of QI methods may be slow, there is steady progress in that direction.

Guimaraes
,
A. R.
, “Quantitative imaging biomarker alliance (QIBA): Protocols and profiles,” in
Quantitative Imaging in Medicine: Background and Basics
, edited by
R. J.
Nordstrom
(
Melville, New York
:
AIP Publishing
,
2021
), pp.
3-1
3-22
.
Kinahan
,
P. E.
 et al
“Standards, phantoms, and site qualification,” in
Quantitative Imaging in Medicine: Background and Basics
, edited by
R. J.
Nordstrom
(
Melville, New York
:
AIP Publishing
,
2021
), pp.
2-1
2-26
.
Acronym or AbbreviationMeaningFound in Chapter
–N(CH3)3 trimethylamine 
[13C]-MRS carbon-13 magnetic resonance spectroscopy 
[18F]FDG [fluorine-18] fluorodeoxyglucose 2, 5, 6, 8, 11 
[18F]FDHT [fluorine-18] fluorodihydrotestosterone 
[18F]FES [fluorine-18] fluoroestradiol 2, 6, 11 
[18F]FLT 3ʹ-deoxy-3ʹ-[fluorine-18] fluorothymidine 2, 5, 6, 7 
[18F]FMISO [fluorine-18] fluoromisonidazole 7, 11 
1D one-dimensional 
[1H]-MRS proton (hydrogen-1 nucleus) magnetic resonance spectroscopy 
2CXM two-compartment exchange model 10 
2D two-dimensional 2, 9 
2-HG 2-hydroxyglutarate 
3D three-dimensional 2, 9 
Ab-MRI abbreviated-MRI 
AC acoustic concentration 
ACR American College of Radiology 4, 6 
ACRIN American College of Radiology Imaging Network 1, 6, 12 
AD axial diffusivity 
ADC apparent diffusion coefficient 1, 5, 7, 10 
ADT androgen deprivation therapy 
AI artificial intelligence 1, 2, 3, 5, 8, 13 
AI-CALS auto-initiated cascaded level set 
AIF arterial input function 
AK axial kurtosis 
Ala alanine 
ALK anaplastic lymphoma kinase 
ANOVA analysis of variance 12 
ARFI acoustic radiation force impulses 
ASL arterial spin labeling 1, 7 
ATP adenosine triphosphate 
ATS American Thoracic Society 
AUROC area under the receiver operating curve 1, 2, 4, 8, 9, 18 
BAC bronchioalveolar cancer 
BBB blood–brain barrier 1, 7 
BGO bismuth germanate 
BI-RADS (American College of Radiology) Breast Imaging Reporting and Data System 1, 6, 7 
BPE background parenchymal enhancement 
BPNN back propagating neural network 
BRATS brain tumor image segmentation 
BrICS brain imaging collaboration suite 
BrICS-LIT brain imaging collaboration suite's longitudinal image tracker 
BSC backscatter coefficient 
BT-RADS brain tumor reporting and data system 
CA contrast agent 1, 6, 7, 10 
CAD computer-aided diagnosis 
CAF Cancer associated fibroblast 
CASL continuous arterial spin labeling 
CBF cerebral blood flow 
CBV cerebral blood volume 1, 7 
CCC concordance correlation coefficient value 8, 12 
CCP contour conjoint procedure 
CDRH Center for Devices and Radiologic Health 12 
CDSS-S Computer Decision Support System for Cancer Staging 
CDSS-T Computer Decision Support System for Cancer Treatment Response 
CEST chemical exchange-dependent saturation transfer 
CHARMED composite hindered and restricted model of diffusion 
Cho choline 5, 7 
CI confidence intervals 2, 4, 12 
CLASS conjoint level set analysis and segmentation system 
CLL chronic lymphocytic leukemia 
CMR complete metabolic response 
cNAWM contralateral normal appearing white matter 
CNN convolutional neural network 5, 7, 8, 9 
COU context of use 12 
CR complete response 2, 7, 10 
Cr creatine 
CRI-RF combined response index for radiomic features 
CRI-RF-DL  combined response index for radiomic features and deep learning 
CRI-RF-DL-EUA combined response index for radiomic features and deep learning exam under anesthesia 
CRIs combined response indices 
CRUK Cancer Research United Kingdom 12 
CSF cerebrospinal fluid 1, 7 
CT computer tomography 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13 
CTRW continuous time random walk 
CTU computed tomography in urology 
CTV clinical target volume 
CV coefficient of variation 
DBT digital breast tomosynthesis 
DCE dynamic contrast-enhanced 1, 7 
DCE-MRI dynamic contrast-enhanced magnetic resonance imaging 7, 10, 11 
DCIS ductal carcinoma in situ 
DDC distributed diffusion coefficient 
DDT drug development tools 12 
DFOV display field of view 
DICOM digital imaging and communications in medicine 
DK diffusion kurtosis 
DKI diffusion kurtosis imaging 
DL deep learning 1, 3, 5, 6, 8, 9 
DLBCL diffuse large b-cell lymphoma 
DL-CNN deep learning convolutional neural network 
DNA deoxyribonucleic acid 
DOTATATE dota tyrosine-3-octreotate 
DRO digital reference object 1, 8 
DSC dynamic susceptibility contrast 1, 7 
DTI diffusion-tensor imaging 1, 7 
DWI diffusion-weighted imaging 1, 7, 10 
DW-MRI diffusion-weighted magnetic resonance imaging 2, 10, 11 
EAC effective acoustic concentration 
EARL European Association of Nuclear Medicine Research Limited 
EBV Epstein–Barr virus 10 
ECM extracellular matrix 4, 6 
ECOG-ACRIN Eastern Cooperative Oncology Group American College of Radiology Imaging Network 11 
EDWP energy-driven wavefront propagation 
EES extravascular extracellular space 1, 10 
EFS event-free survival 
EGFR epidermal growth factor receptor 7, 8, 10, 11, 12 
eGFR Estimated glomerular filtration rate 12 
EORTC European Organization for Research and Treatment of Cancer 
EPI echo planar imaging 7, 9 
EPSI echo planar spectroscopic imaging 
ER estrogen receptor 6, 11 
ERS European Respiratory Society 
ESD effective scatterer diameter 
ESS effective scatterer size 
EUA exam under anesthesia 
FA fractional anisotropy 1, 7 
FACBC 1-amino-3[18F]fluorocyclobutanne-1-carboxylic acid 
FAP fibroblast activation protein 
FAPI fibroblast activation protein inhibitor 
[18F]FCH [fluorine-18] fluoromethyldimethyl-(2-hydrooxyethyl) ammonium chloride 
FDA United States Food and Drug Administration 2, 10, 12 
FDG-PET [fluorine-18]fluorodeoxyglucose positron emission tomography 2, 7, 8, 10 
FDG-PET/CT [fluorine-18]fluorodeoxyglucose positron emission tomography with computed tomography 5, 6, 11 
FDG-SUV [fluorine-18]fluorodeoxyglucose standard uptake value 
fDM functional diffusion map 1, 7 
FES-PET [fluorine-18] fluoroestradiol positron emission tomography 11 
FFDM full-field digital mammography 6, 14 
FLAIR fluid attenuated inversion recovery 1, 7 
FM fractional motion 
FMISO-PET [fluorine-18] fluoromisonidazole positron emission tomography 7, 11 
FNAC fine-needle aspiration cytology 10 
FQP full qualification package 12 
FTB fractional tumor burden 
FTV functional tumor volume 1, 6 
FWHM full-width at half maximum 
FXR fast exchange regime model 10 
GABA gamma aminobutyric acid 
GBCA gadolinium-based contrast agent 1, 7, 10 
GBM glioblastoma multiforme 1, 7 
GGO ground glass opacity 
GLCM gray level co-occurrence matrix 
Glu glutamate 
GPC glycerophosphocholine 
GPU glycerophosphocholine unit 
GRAPPA generalized autocalibrating partially parallel acquisitions 
GRE gradient echo 
GRE EPI gradient echo echo planar imaging 
GTV gross tumor volume 5, 9 
GUI graphical user interface 
HER2 human epidermal growth factor receptor 2 2, 6, 10, 11 
HIF-1a hypoxia inducible factor 1 alpha 7, 10 
HNSCC head and neck squamous cell carcinoma 10 
HPV human papillomavirus 8, 10 
HR hazard ratio 
HU Hounsfield unit 3, 12 
IBEX imaging biomarker explorer 
IBSI imaging biomarker standardization initiative 
ICS intracellular space 10 
IDH isocitrate dehydrogenase 
IHC immunohistochemistry 11 
IHT intensity harmonization technique 
IMRF International Medical Device Regulators Forum 12 
IMRT intensity-modulated radiation therapy 5, 10 
IOM Institute of Medicine 12 
I-SPY investigation of serial studies to predict your therapeutic response with imaging and molecular analysis 1, 11 
ITK-Snap insight toolkit with semi-automatic segmentation 
IVIM intravoxel incoherent motion 1, 7, 10 
Ki-67 protein encoded by mki67 gene, a cellular marker for proliferation 10 
KRAS a gene providing instructions for making the kras protein that instructs cells to grow and divide 
kVp kilovoltage peak 6, 9, 12 
Lac lactate 
LCR local contour refinement 
LDA linear discriminant analysis 
L-DOPA l-3,4-dihydroxyphenylalanine 
L-FET o-(2-[18F]fluoroeethyl)-l-tyrosine 
LGG low-grade glioma 
LIDC lung image database consortium 
LLoQ/ULoQ lower/upper limit of quantification 12 
LOA limit of agreement 12 
LOI letter of intent 12 
LSO lutetium oxyorthosilicate 
MAA microaggregated albumid 
MD mean diffusivity 1, 7 
MDP methylene diphosphonate 2, 11 
METAVIR a semi-quantitative classification system to characterize and predict chronic liver disease progression 
MET-PET [11C]methionine positron emission tomography 
MGR model guided refinement 
mI myo-inositol 
MK mean kurtosis 
MR magnetic resonance 1, 2 5, 7, 8, 10, 11, 12 
MRE magnetic resonance-based elastography 
MRI magnetic resonance imaging 1, 4, 6, 7, 8, 9, 10, 11 
MRS magnetic resonance spectroscopy 6, 7, 11 
MRSI magnetic resonance spectroscopic imaging 
MSD maximum signal drop 
MSE mean square error 12 
MTT mean transit time 1, 7 
MTV metabolic tumor volume 
MVAC methotrexate, vinblastine, doxorubicin, and cisplatin 
N0 neck without evidence of lymph node involvement 12 
NAA N-acetylaspartate 5, 7 
NAAG N-acetylaspartate glutamate 
NAC neoadjuvant chemotherapy 6, 9 
Naf PET sodium fluoride positron emission tomography 
NAFLD non-alcoholic fatty liver disease 
NC an area without contrast 
NCCN National Comprehensive Cancer Network 
NCI National Cancer Institute 11, 13 
nCRT neoadjuvant chemoradiotherapy 
NCTN national clinical trial network 
NEI negative enhancement integral 
NEMA National Electrical Manufacturers Association 
NEMA NU-2 National Electrical Manufacturers Association Nu2 Phantom 
NeoALTTO neoadjuvant lapatinib and/or trastuzumab treatment option clinical trial 11 
NET neuroendocrine tumors 
NG-IVIM-DW non-Gaussian intervoxel incoherent motion in diffusion-weighted imaging 10 
NHL non-Hodgkin lymphoma 
NMR nuclear magnetic resonance 
NN neural network 
NPC nasopharyngeal carcinoma 10 
NPL nasopharyngeal lymphoma 10 
NPV negative predictive value 2, 6, 12 
NSCLC non-small cell lung cancer 2, 3, 8, 12 
NTCP normal tissue complication probability 2, 5 
OS overall survival 2, 8, 11 
p16 protein that slows cell division by slowing progression of the cell cycle 10 
p53 a gene that codes for protein that regulates cell cycle and functions as a tumor suppressor 10 
PASL pulsed arterial spin labeling 
PC phosphocholine 
pCASL pseudo continuous arterial spin labeling 
pCR pathologic complete response 2, 6, 11 
PD progressive disease 
PD-L1 programmed death ligand 1 
PEM positron emission mammography 
PER parameter estimation region 
PERCIST positron emission response criteria in solid tumors 2, 6, 10 
PET/CT positron emission tomography with computed tomography 2, 6, 10, 11, 12 
PET/MRI positron emission tomography with magnetic resonance imaging 
PET2 positron emission tomography done after cycle 2 
PET4 positron emission tomography done after cycle 4 
PETAL positron emission tomography guided therapy of aggressive non-Hodgkin's lymphoma 
PFS progression-free survival 2, 7, 8, 9, 11 
PH peak height 
PI pulsatility index 
PIRADS prostate imaging and reporting data systems 
PK pharmacokinetic 1, 6 
PMD progressive metabolic disease 
PMR partial metabolic response 
pNAWM perilesional normal appearing white matter tissue 
PR partial response 2, 7 
PRESS point resolved spectroscopy 
PSA prostate cancer antigen 
PSF point spread function 
PSMA prostate specific membrane antigen 2, 5 
PSMA-TV prostate specific membrane antigen tumor 
PSR percent signal recovery 1, 7 
PTEN agene located on the chromosome band 10q23 
PTV planning target volume 2, 5 
PWI perfusion-weighted imaging 1, 7 
pWM perilesional white matter 
QA/QC quality assurance/quality control 12 
QIB quantitative imaging biomarker 4, 8, 10, 11, 12 
QIBA Quantitative Imaging Biomarker Alliance 2, 4, 12 
QIBC quantitative image analysis tool for bladder cancer 
QIN Quantitative Imaging Network 8, 11, 13 
QUS quantitative ultrasound 
fractional order calculus 
R2 relaxation rate 1, 12 
RAD radiation absorbed dose 
RAF random forest 8, 9 
RANO response assessment in neuro-oncology 
RC repeatability coefficient 2, 12 
RCB residual cancer burden 
rCBF relative cerebral blood flow 
rCBV relative cerebral blood volume 1, 7 
R-CHOP drugs in combination: rituximab, cyctophosphamide, hydroxydaunomycin, oncovin, and prednisone 
RD radial diffusivity 
RDC reproducibility coefficient 12 
RECIST response evaluation criteria in solid tumors 7, 8, 9, 11, 12, 13 
REDCap research electronic data capture 
REMARK Reporting Recommendations for Tumor Marker Prognostic Studies 11, 12 
RF radiofrequency 1, 4, 5, 7 
RFs radiomic features 1, 3, 6, 8, 9 
RFA radiofrequency ablation 
RF-ROI radiomic features for paired regions of interest 
RFS recurrence-free survival 6, 11 
RF SL radiomic features segmented lesions 
RI resistivity index 
RIDER reference image database to evaluate therapy response 
RK radial kurtosis 
ROC receiver operating characteristic or curve 4, 8, 9, 12 
ROI region of interest 1, 3, 4, 6, 9 
RPM reference phantom method 
RPT radiopharmaceutical therapy 
RSI restricted spectrum imaging 1, 7 
RSNA Radiological Society of North America 12 
RT radiation therapy 
SAGE spin and gradient echo 
SaMD software and medical device 12 
SAS spacing among scatterers, also referred to as mean scatterer spacing 
SCC squamous cell carcinoma 10 
SCLC small cell liver cancer 2, 8 
SD stable disease 
SE spin-echo 1, 7 
SE-EPI spin-echo echo planar imaging 
SEER surveillance, epidemiology, and end results 
SENSE sensitivity encoding 
SER signal enhancement ratio 
SMD stable metabolic disease 
sMRI spectroscopic magnetic resonance imaging 
SNR signal-to-noise ratio 1, 4, 7 
SPECT single photon emission computed tomography 
SPECT/CT single photon emission computed tomography with computed tomography 
SPGR spoiled gradient echo 1, 10 
sRCBV standardized relative cerebral blood volume 
SRE skeletal related event 11 
SRS stereotactic radiosurgery 
SSA singular spectrum analysis 
SSE spatial–spectral encoding 
SS-EPI single shot echo planar imaging 10 
SUL standard uptake lean (body mass) 
SUR standard uptake ratio 
SUV standard uptake value 2, 6, 8, 12 
SVM support vector machine 
SWEI shear wave elasticity imaging 
T/WM tumor to white matter ratio 
T0 total response to therapy: no disease 
T1 stage 1 of disease 
T1 time to reach 2/3 of equilibrium magnetization along z-axis 7, 8, 9, 10, 12 
T2 transverse relaxation time 1, 7, 12 
T2 stage 2 of disease 
T2* observed or effective transverse relaxation time 1, 7 
TB tuberculosis 
TBR target to blood pool ratio 2, 11 
TCM tube current modulation 
TCP tumor control probability 
TE echo time 1, 7 
Ti-RADS thyroid imaging reporting and data system 10 
TK1 thymidine kinase 
TLF total lesion fluoride uptake 
TLG total lesion glycolysis 
TL-PSMA total lesion prostate specific membrane antigen 
TLU total lesion uptake 
TMS tetramethylsilane 
TMTV total metabolic tumor volume 
TNBC triple negative breast cancer 
TNM tumor, node, metastasis 
TOF time of flight 2, 4 
TRG total lesion glycolysis 
TTP time to peak 
TTP time to perfusion 10 
TURBT transurethral resection of bladder tumor 
UDFF ultrasound-derived fat fraction 
U-DL U-Net-based deep learning 
UPICT uniform protocols for imaging in clinical trials 
VEGF vascular endothelial growth factor 7, 10 
VERDICT vascular, extracellular, and restricted diffusion for cytometry in tumors 
VMAT volumetric modulated arc therapy 
VOI volume of interest 2, 7 
WHO World Health Organization 
WOLD a time series decomposition theorem 
Acronym or AbbreviationMeaningFound in Chapter
–N(CH3)3 trimethylamine 
[13C]-MRS carbon-13 magnetic resonance spectroscopy 
[18F]FDG [fluorine-18] fluorodeoxyglucose 2, 5, 6, 8, 11 
[18F]FDHT [fluorine-18] fluorodihydrotestosterone 
[18F]FES [fluorine-18] fluoroestradiol 2, 6, 11 
[18F]FLT 3ʹ-deoxy-3ʹ-[fluorine-18] fluorothymidine 2, 5, 6, 7 
[18F]FMISO [fluorine-18] fluoromisonidazole 7, 11 
1D one-dimensional 
[1H]-MRS proton (hydrogen-1 nucleus) magnetic resonance spectroscopy 
2CXM two-compartment exchange model 10 
2D two-dimensional 2, 9 
2-HG 2-hydroxyglutarate 
3D three-dimensional 2, 9 
Ab-MRI abbreviated-MRI 
AC acoustic concentration 
ACR American College of Radiology 4, 6 
ACRIN American College of Radiology Imaging Network 1, 6, 12 
AD axial diffusivity 
ADC apparent diffusion coefficient 1, 5, 7, 10 
ADT androgen deprivation therapy 
AI artificial intelligence 1, 2, 3, 5, 8, 13 
AI-CALS auto-initiated cascaded level set 
AIF arterial input function 
AK axial kurtosis 
Ala alanine 
ALK anaplastic lymphoma kinase 
ANOVA analysis of variance 12 
ARFI acoustic radiation force impulses 
ASL arterial spin labeling 1, 7 
ATP adenosine triphosphate 
ATS American Thoracic Society 
AUROC area under the receiver operating curve 1, 2, 4, 8, 9, 18 
BAC bronchioalveolar cancer 
BBB blood–brain barrier 1, 7 
BGO bismuth germanate 
BI-RADS (American College of Radiology) Breast Imaging Reporting and Data System 1, 6, 7 
BPE background parenchymal enhancement 
BPNN back propagating neural network 
BRATS brain tumor image segmentation 
BrICS brain imaging collaboration suite 
BrICS-LIT brain imaging collaboration suite's longitudinal image tracker 
BSC backscatter coefficient 
BT-RADS brain tumor reporting and data system 
CA contrast agent 1, 6, 7, 10 
CAD computer-aided diagnosis 
CAF Cancer associated fibroblast 
CASL continuous arterial spin labeling 
CBF cerebral blood flow 
CBV cerebral blood volume 1, 7 
CCC concordance correlation coefficient value 8, 12 
CCP contour conjoint procedure 
CDRH Center for Devices and Radiologic Health 12 
CDSS-S Computer Decision Support System for Cancer Staging 
CDSS-T Computer Decision Support System for Cancer Treatment Response 
CEST chemical exchange-dependent saturation transfer 
CHARMED composite hindered and restricted model of diffusion 
Cho choline 5, 7 
CI confidence intervals 2, 4, 12 
CLASS conjoint level set analysis and segmentation system 
CLL chronic lymphocytic leukemia 
CMR complete metabolic response 
cNAWM contralateral normal appearing white matter 
CNN convolutional neural network 5, 7, 8, 9 
COU context of use 12 
CR complete response 2, 7, 10 
Cr creatine 
CRI-RF combined response index for radiomic features 
CRI-RF-DL  combined response index for radiomic features and deep learning 
CRI-RF-DL-EUA combined response index for radiomic features and deep learning exam under anesthesia 
CRIs combined response indices 
CRUK Cancer Research United Kingdom 12 
CSF cerebrospinal fluid 1, 7 
CT computer tomography 1, 2, 3, 4, 5, 7, 9, 10, 11, 12, 13 
CTRW continuous time random walk 
CTU computed tomography in urology 
CTV clinical target volume 
CV coefficient of variation 
DBT digital breast tomosynthesis 
DCE dynamic contrast-enhanced 1, 7 
DCE-MRI dynamic contrast-enhanced magnetic resonance imaging 7, 10, 11 
DCIS ductal carcinoma in situ 
DDC distributed diffusion coefficient 
DDT drug development tools 12 
DFOV display field of view 
DICOM digital imaging and communications in medicine 
DK diffusion kurtosis 
DKI diffusion kurtosis imaging 
DL deep learning 1, 3, 5, 6, 8, 9 
DLBCL diffuse large b-cell lymphoma 
DL-CNN deep learning convolutional neural network 
DNA deoxyribonucleic acid 
DOTATATE dota tyrosine-3-octreotate 
DRO digital reference object 1, 8 
DSC dynamic susceptibility contrast 1, 7 
DTI diffusion-tensor imaging 1, 7 
DWI diffusion-weighted imaging 1, 7, 10 
DW-MRI diffusion-weighted magnetic resonance imaging 2, 10, 11 
EAC effective acoustic concentration 
EARL European Association of Nuclear Medicine Research Limited 
EBV Epstein–Barr virus 10 
ECM extracellular matrix 4, 6 
ECOG-ACRIN Eastern Cooperative Oncology Group American College of Radiology Imaging Network 11 
EDWP energy-driven wavefront propagation 
EES extravascular extracellular space 1, 10 
EFS event-free survival 
EGFR epidermal growth factor receptor 7, 8, 10, 11, 12 
eGFR Estimated glomerular filtration rate 12 
EORTC European Organization for Research and Treatment of Cancer 
EPI echo planar imaging 7, 9 
EPSI echo planar spectroscopic imaging 
ER estrogen receptor 6, 11 
ERS European Respiratory Society 
ESD effective scatterer diameter 
ESS effective scatterer size 
EUA exam under anesthesia 
FA fractional anisotropy 1, 7 
FACBC 1-amino-3[18F]fluorocyclobutanne-1-carboxylic acid 
FAP fibroblast activation protein 
FAPI fibroblast activation protein inhibitor 
[18F]FCH [fluorine-18] fluoromethyldimethyl-(2-hydrooxyethyl) ammonium chloride 
FDA United States Food and Drug Administration 2, 10, 12 
FDG-PET [fluorine-18]fluorodeoxyglucose positron emission tomography 2, 7, 8, 10 
FDG-PET/CT [fluorine-18]fluorodeoxyglucose positron emission tomography with computed tomography 5, 6, 11 
FDG-SUV [fluorine-18]fluorodeoxyglucose standard uptake value 
fDM functional diffusion map 1, 7 
FES-PET [fluorine-18] fluoroestradiol positron emission tomography 11 
FFDM full-field digital mammography 6, 14 
FLAIR fluid attenuated inversion recovery 1, 7 
FM fractional motion 
FMISO-PET [fluorine-18] fluoromisonidazole positron emission tomography 7, 11 
FNAC fine-needle aspiration cytology 10 
FQP full qualification package 12 
FTB fractional tumor burden 
FTV functional tumor volume 1, 6 
FWHM full-width at half maximum 
FXR fast exchange regime model 10 
GABA gamma aminobutyric acid 
GBCA gadolinium-based contrast agent 1, 7, 10 
GBM glioblastoma multiforme 1, 7 
GGO ground glass opacity 
GLCM gray level co-occurrence matrix 
Glu glutamate 
GPC glycerophosphocholine 
GPU glycerophosphocholine unit 
GRAPPA generalized autocalibrating partially parallel acquisitions 
GRE gradient echo 
GRE EPI gradient echo echo planar imaging 
GTV gross tumor volume 5, 9 
GUI graphical user interface 
HER2 human epidermal growth factor receptor 2 2, 6, 10, 11 
HIF-1a hypoxia inducible factor 1 alpha 7, 10 
HNSCC head and neck squamous cell carcinoma 10 
HPV human papillomavirus 8, 10 
HR hazard ratio 
HU Hounsfield unit 3, 12 
IBEX imaging biomarker explorer 
IBSI imaging biomarker standardization initiative 
ICS intracellular space 10 
IDH isocitrate dehydrogenase 
IHC immunohistochemistry 11 
IHT intensity harmonization technique 
IMRF International Medical Device Regulators Forum 12 
IMRT intensity-modulated radiation therapy 5, 10 
IOM Institute of Medicine 12 
I-SPY investigation of serial studies to predict your therapeutic response with imaging and molecular analysis 1, 11 
ITK-Snap insight toolkit with semi-automatic segmentation 
IVIM intravoxel incoherent motion 1, 7, 10 
Ki-67 protein encoded by mki67 gene, a cellular marker for proliferation 10 
KRAS a gene providing instructions for making the kras protein that instructs cells to grow and divide 
kVp kilovoltage peak 6, 9, 12 
Lac lactate 
LCR local contour refinement 
LDA linear discriminant analysis 
L-DOPA l-3,4-dihydroxyphenylalanine 
L-FET o-(2-[18F]fluoroeethyl)-l-tyrosine 
LGG low-grade glioma 
LIDC lung image database consortium 
LLoQ/ULoQ lower/upper limit of quantification 12 
LOA limit of agreement 12 
LOI letter of intent 12 
LSO lutetium oxyorthosilicate 
MAA microaggregated albumid 
MD mean diffusivity 1, 7 
MDP methylene diphosphonate 2, 11 
METAVIR a semi-quantitative classification system to characterize and predict chronic liver disease progression 
MET-PET [11C]methionine positron emission tomography 
MGR model guided refinement 
mI myo-inositol 
MK mean kurtosis 
MR magnetic resonance 1, 2 5, 7, 8, 10, 11, 12 
MRE magnetic resonance-based elastography 
MRI magnetic resonance imaging 1, 4, 6, 7, 8, 9, 10, 11 
MRS magnetic resonance spectroscopy 6, 7, 11 
MRSI magnetic resonance spectroscopic imaging 
MSD maximum signal drop 
MSE mean square error 12 
MTT mean transit time 1, 7 
MTV metabolic tumor volume 
MVAC methotrexate, vinblastine, doxorubicin, and cisplatin 
N0 neck without evidence of lymph node involvement 12 
NAA N-acetylaspartate 5, 7 
NAAG N-acetylaspartate glutamate 
NAC neoadjuvant chemotherapy 6, 9 
Naf PET sodium fluoride positron emission tomography 
NAFLD non-alcoholic fatty liver disease 
NC an area without contrast 
NCCN National Comprehensive Cancer Network 
NCI National Cancer Institute 11, 13 
nCRT neoadjuvant chemoradiotherapy 
NCTN national clinical trial network 
NEI negative enhancement integral 
NEMA National Electrical Manufacturers Association 
NEMA NU-2 National Electrical Manufacturers Association Nu2 Phantom 
NeoALTTO neoadjuvant lapatinib and/or trastuzumab treatment option clinical trial 11 
NET neuroendocrine tumors 
NG-IVIM-DW non-Gaussian intervoxel incoherent motion in diffusion-weighted imaging 10 
NHL non-Hodgkin lymphoma 
NMR nuclear magnetic resonance 
NN neural network 
NPC nasopharyngeal carcinoma 10 
NPL nasopharyngeal lymphoma 10 
NPV negative predictive value 2, 6, 12 
NSCLC non-small cell lung cancer 2, 3, 8, 12 
NTCP normal tissue complication probability 2, 5 
OS overall survival 2, 8, 11 
p16 protein that slows cell division by slowing progression of the cell cycle 10 
p53 a gene that codes for protein that regulates cell cycle and functions as a tumor suppressor 10 
PASL pulsed arterial spin labeling 
PC phosphocholine 
pCASL pseudo continuous arterial spin labeling 
pCR pathologic complete response 2, 6, 11 
PD progressive disease 
PD-L1 programmed death ligand 1 
PEM positron emission mammography 
PER parameter estimation region 
PERCIST positron emission response criteria in solid tumors 2, 6, 10 
PET/CT positron emission tomography with computed tomography 2, 6, 10, 11, 12 
PET/MRI positron emission tomography with magnetic resonance imaging 
PET2 positron emission tomography done after cycle 2 
PET4 positron emission tomography done after cycle 4 
PETAL positron emission tomography guided therapy of aggressive non-Hodgkin's lymphoma 
PFS progression-free survival 2, 7, 8, 9, 11 
PH peak height 
PI pulsatility index 
PIRADS prostate imaging and reporting data systems 
PK pharmacokinetic 1, 6 
PMD progressive metabolic disease 
PMR partial metabolic response 
pNAWM perilesional normal appearing white matter tissue 
PR partial response 2, 7 
PRESS point resolved spectroscopy 
PSA prostate cancer antigen 
PSF point spread function 
PSMA prostate specific membrane antigen 2, 5 
PSMA-TV prostate specific membrane antigen tumor 
PSR percent signal recovery 1, 7 
PTEN agene located on the chromosome band 10q23 
PTV planning target volume 2, 5 
PWI perfusion-weighted imaging 1, 7 
pWM perilesional white matter 
QA/QC quality assurance/quality control 12 
QIB quantitative imaging biomarker 4, 8, 10, 11, 12 
QIBA Quantitative Imaging Biomarker Alliance 2, 4, 12 
QIBC quantitative image analysis tool for bladder cancer 
QIN Quantitative Imaging Network 8, 11, 13 
QUS quantitative ultrasound 
fractional order calculus 
R2 relaxation rate 1, 12 
RAD radiation absorbed dose 
RAF random forest 8, 9 
RANO response assessment in neuro-oncology 
RC repeatability coefficient 2, 12 
RCB residual cancer burden 
rCBF relative cerebral blood flow 
rCBV relative cerebral blood volume 1, 7 
R-CHOP drugs in combination: rituximab, cyctophosphamide, hydroxydaunomycin, oncovin, and prednisone 
RD radial diffusivity 
RDC reproducibility coefficient 12 
RECIST response evaluation criteria in solid tumors 7, 8, 9, 11, 12, 13 
REDCap research electronic data capture 
REMARK Reporting Recommendations for Tumor Marker Prognostic Studies 11, 12 
RF radiofrequency 1, 4, 5, 7 
RFs radiomic features 1, 3, 6, 8, 9 
RFA radiofrequency ablation 
RF-ROI radiomic features for paired regions of interest 
RFS recurrence-free survival 6, 11 
RF SL radiomic features segmented lesions 
RI resistivity index 
RIDER reference image database to evaluate therapy response 
RK radial kurtosis 
ROC receiver operating characteristic or curve 4, 8, 9, 12 
ROI region of interest 1, 3, 4, 6, 9 
RPM reference phantom method 
RPT radiopharmaceutical therapy 
RSI restricted spectrum imaging 1, 7 
RSNA Radiological Society of North America 12 
RT radiation therapy 
SAGE spin and gradient echo 
SaMD software and medical device 12 
SAS spacing among scatterers, also referred to as mean scatterer spacing 
SCC squamous cell carcinoma 10 
SCLC small cell liver cancer 2, 8 
SD stable disease 
SE spin-echo 1, 7 
SE-EPI spin-echo echo planar imaging 
SEER surveillance, epidemiology, and end results 
SENSE sensitivity encoding 
SER signal enhancement ratio 
SMD stable metabolic disease 
sMRI spectroscopic magnetic resonance imaging 
SNR signal-to-noise ratio 1, 4, 7 
SPECT single photon emission computed tomography 
SPECT/CT single photon emission computed tomography with computed tomography 
SPGR spoiled gradient echo 1, 10 
sRCBV standardized relative cerebral blood volume 
SRE skeletal related event 11 
SRS stereotactic radiosurgery 
SSA singular spectrum analysis 
SSE spatial–spectral encoding 
SS-EPI single shot echo planar imaging 10 
SUL standard uptake lean (body mass) 
SUR standard uptake ratio 
SUV standard uptake value 2, 6, 8, 12 
SVM support vector machine 
SWEI shear wave elasticity imaging 
T/WM tumor to white matter ratio 
T0 total response to therapy: no disease 
T1 stage 1 of disease 
T1 time to reach 2/3 of equilibrium magnetization along z-axis 7, 8, 9, 10, 12 
T2 transverse relaxation time 1, 7, 12 
T2 stage 2 of disease 
T2* observed or effective transverse relaxation time 1, 7 
TB tuberculosis 
TBR target to blood pool ratio 2, 11 
TCM tube current modulation 
TCP tumor control probability 
TE echo time 1, 7 
Ti-RADS thyroid imaging reporting and data system 10 
TK1 thymidine kinase 
TLF total lesion fluoride uptake 
TLG total lesion glycolysis 
TL-PSMA total lesion prostate specific membrane antigen 
TLU total lesion uptake 
TMS tetramethylsilane 
TMTV total metabolic tumor volume 
TNBC triple negative breast cancer 
TNM tumor, node, metastasis 
TOF time of flight 2, 4 
TRG total lesion glycolysis 
TTP time to peak 
TTP time to perfusion 10 
TURBT transurethral resection of bladder tumor 
UDFF ultrasound-derived fat fraction 
U-DL U-Net-based deep learning 
UPICT uniform protocols for imaging in clinical trials 
VEGF vascular endothelial growth factor 7, 10 
VERDICT vascular, extracellular, and restricted diffusion for cytometry in tumors 
VMAT volumetric modulated arc therapy 
VOI volume of interest 2, 7 
WHO World Health Organization 
WOLD a time series decomposition theorem 

Reinhard R. Beichel

Professor, Department of ECE, University of Iowa, Iowa City, IA

John M. Buatti

Department of Radiaton Oncoogy, University of Iowa, Iowa City, IA

Heang-Ping Chan

Paul L. Carson Collegiate Professor, Radiology, Director, CAD-Ai Research Laboratory, University of Michigan, Ann Arbor, MI

Jana Delfino

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD

Laurent Dercle

Columbia University, Department of Radiology, New York, NY

Marios A. Gavrielides

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD (currently with AstraZeneca, Gaithersburg, MD)

Mohammed Goryawala

Research Assistant Professor, Department of Radiology, University of Miami, Miami, FL

Lubomir Hadjiyski

Professor, Radiology, Rogel Cancer Center, University of Michigan, Ann Arbor, MI

Timothy J. Hall

Department of Medical Physics, University of Wisconsin-Madison, Madison, WI

Deep K. Hathi

University of California, San Francisco, 1600 Divisadero Street, San Francisco, CA, USA

Vaios Hatzoglou

Memorial Sloan Kettering Cancer Center, New York, NY

Nola M. Hylton

University of California, San Francisco, 1600 Divisadero Street, San Francisco, CA, USA

Ella F. Jones

University of California, San Francisco, 1600 Divisadero Street, San Francisco, CA, USA

Qin Li

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD (currently with AstraZeneca, Waltham, MA)

Martin A. Lodge

Department of Radiology, Johns Hopkins University, Baltimore, MD

David Mankoff

Department of Radiology, University of Pennsylvania, Philadelphia, PA

Michael McNitt-Gray

Director, Physics and Biology in Medicine Graduate Program, Professor, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA

Robert J. Nordstrom

Director, Quantitative Imaging Network, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD

Ramesh Paudyal

Memorial Sloan Kettering Cancer Center, New York, NY

Nicholas Petrick

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD

Ivan M. Rosado-Mendez

Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico

Ravi Samala

Adjunct Research Assistant Professor, Radiology, University of Michigan, Ann Arbor, MI

Kathleen M. Schmainda

Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI

Lawrence H. Schwartz

Department of Radiology, Columbia University, New York, NY

Akash Deelip Shah

Memorial Sloan Kettering Cancer Center, New York, NY

Hyunsuk Shim

Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA

Amita Shukla-Dave

Memorial Sloan Kettering Cancer Center, New York, NY

Richard L. Wahl

Chairman, Department of Radiology, Washington University, St. Louis, MO

Brent Weinberg

Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA

Binsheng Zhao

Columbia University, Department of Radiology, New York, NY

or Create an Account

Close Modal
Close Modal