Composite materials based on graphitic carbon nitride (gCN) and decorated with either ZnO or ZnFe2O4 nanoparticles (NPs) have been fabricated and tested as (photo)electrocatalysts for the ethanol oxidation reaction. In this work, we report on the x-ray photoelectron spectroscopy analysis of two representative composite specimens, obtained by electrophoretic deposition of gCN on carbon cloth substrates, and subsequent functionalization with ZnO or ZnFe2O4 NPs by means of radio frequency-sputtering under mild conditions. In particular, the data reported herein include survey spectra and high-resolution scans for C 1s, N 1s, O 1s, Zn 2p, and Fe 2p regions, together with Zn LMM Auger peaks. The main spectral features are analyzed by comparatively discussing the resulting material properties.

  • Accession#: 01996 and 01997

  • Technique: XPS, XAES

  • Specimen: gCN-ZnO; gCN-ZnFe2O4

  • Instrument: ThermoFisher Scientific EscalabTM QXi

  • Major Elements in Spectra: C, N, O, Zn, Fe

  • Minor Elements in Spectra: Ca

  • Published Spectra: 13

  • Spectral Category: Comparison

Over the past decade, graphitic carbon nitride (gCN)-based systems have received significant attention as versatile, metal-free multifunctional (photo)electrocatalytic platforms for environmental remediation and clean energy production (Refs. 1–4). This widespread interest has been fueled by gCN chemical-physical properties, in particular its ability to absorb Vis light (Eg ≈ 2.7 eV), its facile synthesis from readily available and nontoxic precursors, chemical stability, along with the tunable defectivity and electronic structure (Refs. 5–7). These benefits are partially hindered by some intrinsic limitations, such as a restricted active surface area and the rapid recombination of photogenerated electrons and holes (Refs. 2, 8, and 9). Among the various possible approaches to address these challenges (Refs. 7 and 10–12), the modulation of material nano-organization (Refs. 13 and 14) and the combination with nano-dispersed metal or metal oxide co-catalysts (Refs. 1, 15, and 16) hold a considerable promise. In particular, thanks to the presence of electron-rich sites on its surface, gCN can be effectively employed as an active support for anchoring and stabilizing metal and metal oxide nanostructures (Refs. 17–19). The intimate contact between the introduced functionalizing agents and the underlying gCN can lead to the formation of heterojunctions, which can favorably extend the lifetime of electron/hole pairs and suppress detrimental recombination losses, thereby increasing the ultimate system performances (Refs. 9, 15, 16, and 20).

Building on these insights, the present research work explores the development of gCN-ZnO (zincite) and gCN-ZnFe2O4 (zinc ferrite) composite (photo)anodes to be employed for ethanol oxidation reaction (EOR), an appealing process for clean energy generation (Refs. 21 and 22). Previous works have reported on the successful combination of graphitic carbon nitride with ZnO and ZnFe2O4, in particular for the photocatalytic remediation of water from persistent pollutants (Refs. 23–27), whereas the functional application of these materials as EOR electrocatalysts is still substantially unexplored up to date.

In this work, the synthesis of the target composites is performed by a multistep approach. First, gCN was prepared by thermal polymerization of thiourea, mixed with acetylacetone (Ref. 12). Subsequently, carbon nitride was deposited onto carbon cloth (CC) substrates through an electrophoretic deposition (EPD) procedure, already optimized by our group (Ref. 28). ZnO or ZnFe2O4 nanoparticles were then introduced employing plasma-assisted radio frequency (RF)-sputtering at low temperatures. Finally, the prepared materials underwent a thermal treatment in air, for their final stabilization before chemico-physical characterization and functional tests.

In the present contribution, an insightful XPS investigation of representative gCN-ZnO and gCN-ZnFe2O4 specimens is reported, providing a systematic examination of the elemental chemical states by the analysis of their main peaks (C 1s, N 1s, O 1s, Zn 2p, Zn LMM, and Fe 2p). The present data could serve as a useful comparison in the XPS investigation of similar composite materials for (photo)electrocatalytic and energy-related applications.

Specimen: gCN-ZnO

CAS Registry #: Unknown

Specimen Characteristics: Homogeneous; solid; polycrystalline; semiconductor; composite

Chemical Name: Graphitic carbon nitride-zinc (II) oxide

Source: Specimen prepared by gCN electrophoretic deposition on carbon cloth, followed by functionalization with ZnO by RF-sputtering for 30 min, and final thermal treatment in air at 350 °C for 90 min.

Composition: C, N, O, Zn

Form: Supported nanocomposite

Structure: X-ray diffraction (XRD) investigation evidenced the presence of one intense signal at 2θ ≈ 25.6° and minor peaks at ≈43.5° and 52.9° ascribed, respectively, to the (002), (100), and (404) reflections from the CC support (Ref. 29). No signal related to graphitic carbon nitride or ZnO could be clearly observed. Fourier-transform infrared (FT-IR) spectroscopy analysis showed the characteristic vibrational modes of the gCN network in the 1200–1700 cm−1 range, and a peak at ≈820 cm−1 due to out-of-plane bending of heptazine rings (Refs. 30 and 31). The broad band at 3200–3300 cm−1 was ascribed to the presence of uncondensed −NHx groups (x = 1, 2) and chemisorbed –OH (Refs. 20 and 32). Scanning electron microscopy (SEM) analyses revealed that gCN deposits were characterized by an exfoliated, sheet-like morphology, covering the underlying CC. No ZnO-containing particles could be clearly observed. Transmission electron microscopy (TEM) confirmed the presence of nano-dispersed ZnO onto carbon nitride. The latter feature is expected to result in an enhanced contact between the system constituents, favoring their synergistic interplay and boosting thus the ultimate electrocatalytic performances.

History and Significance: gCN was prepared by thermal condensation of thiourea (TU) powders, mixed with acetylacetone (AcAc), in air (550 °C for 2 h, heating rate = 3 °C/min) (Ref. 12). The obtained powders were deposited onto a precleaned carbon cloth substrate (Quintech E35; 150 μm thickness, ≈2 × 1 cm2 area) via EPD. Deposition was carried out under previously optimized experimental conditions (applied potential = 10 V; duration = 10 min) (Ref. 28). The resulting sample was annealed in air at 300 °C for 1 h. The subsequent functionalization with ZnO was performed by RF-sputtering (ν = 13.56 MHz) from an Ar plasma, in a custom-built two-electrode reactor. To this aim, a ZnO target (Neyco, purity = 99%, thickness = 0.1 mm) was fixed on the RF-electrode, whereas CC-supported gCN was mounted on the grounded one. Sputtering was performed using the following experimental settings: Ar flow rate = 10 standard cubic centimeters per minute (SCCM); total pressure = 0.30 mbar; growth temperature = 60 °C; RF-power = 20 W; duration = 30 min. After sputtering, the obtained composite material underwent final annealing in air at 350 °C for 90 min.

As Received Condition: As grown.

Analyzed Region: Same as specimen.

Ex Situ Preparation/Mounting: The specimen was mounted on a grounded sample holder by metallic clips and introduced into the chamber through a fast entry system.

In Situ Preparation: The sample was analyzed as received. Core-level spectra recorded for the received sample, and at the end of the first round of analyses, did not show any significant variations, enabling thus to exclude the occurrence of appreciable analysis-induced damages arising from x-ray exposure.

Charge Control: None

Temp. During Analysis: 298 K

Pressure During Analysis: 10−7 Pa

Pre-analysis Beam Exposure: 150 s

Specimen: gCN-ZnFe2O4

CAS Registry #: Unknown

Specimen Characteristics: Homogeneous; solid; polycrystalline; semiconductor; composite

Chemical Name: Graphitic carbon nitride-zinc ferrite

Source: Specimen prepared by gCN electrophoretic deposition on carbon cloth, followed by functionalization with ZnFe2O4 by RF-sputtering for 200 min and final thermal treatment in air at 350 °C for 90 min.

Composition: C, N, O, Zn, Fe

Form: Supported nanocomposite

Structure: XRD and FT-IR analyses yielded results analogous to the material described in accession # 01996. SEM analyses evidenced a similar gCN morphology, whereas TEM measurements highlighted the presence of ultradispersed ZnFe2O4.

History and Significance: gCN-ZnFe2O4 synthesis conditions were the same adopted for gCN-ZnO; the only differences were the use of a ZnFe2O4 target (Neyco, purity = 99%, thickness = 0.1 mm) and the duration of the sputtering process (200 min).

As Received Condition: As grown.

Analyzed Region: Same as specimen.

Ex Situ Preparation/Mounting: The specimen was mounted on a grounded sample holder by metallic clips and introduced into the chamber through a fast entry system.

In Situ Preparation: The sample was analyzed as received. As for accession # 01996, the occurrence of x-ray beam damages was ruled out by reacquiring core level spectra at the end of the analysis.

Charge Control: None

Temp. During Analysis: 298 K

Pressure During Analysis: 10−7 Pa

Pre-analysis Beam Exposure: 150 s

Manufacturer and Model: ThermoFisher Scientific EscalabTM QXi

Analyzer Type: Spherical sector

Detector: Channeltron

Number of Detector Elements: 6

Analyzer Mode: Constant pass energy

Throughput (T = EN): The transmission function is calculated from a cubic polynomial fit to a plot of log[peak area/(PE × XSF)] vs log(KE/PE), where PE is the pass energy, KE is the kinetic energy, and XSF is the relative sensitivity factor (Refs. 33–35).

Excitation Source Window: 1.5-μm Al window

Excitation Source: Al Kα

Source Energy: 1486.6 eV

Source Strength: 200 W

Source Beam Size: 500 × 200 μm2

Signal Mode: Single channel direct

Incident Angle: 55°

Source-to-Analyzer Angle: 135°

Emission Angle:

Specimen Azimuthal Angle: 90°

Acceptance Angle from Analyzer Axis: 45°

Analyzer Angular Acceptance Width: 22.5° × 22.5°

Manufacturer and Model: ThermoFisher Scientific MAGCIS Dual Beam Ion Source

Energy: 4000 eV

Current: 7 mA

Current Measurement Method: Biased stage

Sputtering Species and Charge: Ar+

Spot Size (unrastered): 500 μm

Raster Size: 4500 × 4500 μm2

Incident Angle: 40°

Polar Angle: 40°

Azimuthal Angle: 270°

Comment: Differentially pumped ion gun

Energy Scale Correction: Binding energy values were corrected for charging by setting the adventitious C 1s signal to 284.8 eV (Ref. 36). The validity of the obtained results is supported by a detailed comparison of the contributing band positions with previous literature results on homologous systems (Refs. 9, 20, 28, 33, and 37).

Recommended Energy Scale Shift: −1.08 eV for accession # 01996 and −1.10 eV for accession # 01997.

Peak Shape and Background Method: In the present work, after a Shirley-type background subtraction, peak fitting was carried out with the least-squares fitting method (Ref. 38), employing the xpspeak software (version 4.1) (Ref. 39) and adopting Gaussian/Lorentzian sum functions (typical mixing parameter = 0.2–0.3) (Ref. 40). We verified that the fitting results did not yield significant differences and were satisfactory, with small variations of the mixing parameter in this range. No constraints on the relative binding energy positions and FWHM values of the contributing components were ever imposed. The reliability of the obtained data is supported by their consistency with literature references, as well as with the outcomes of our previous results on different composite materials based on graphitic carbon nitride (Refs. 33, 37, and 41–46).

Quantitation Method: Quantification was accomplished by normalizing peak areas for the respective sensitivity factors (Ref. 47), provided by Thermo Scientific Avantage software (version 6.6.0, Build 00114).

SPECTRAL FEATURES TABLE

Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
01996-02a C 1s 284.8 2.0 10 336.3 1.000 6.7 Adventitious contamination and C—C bonds in the CC substrate 
01996-02a C 1s 286.3 2.1 14 166.8 1.000 9.2 C in uncondensed C—NHx (x = 1,2) groups 
01996-02a C 1s 288.8 1.6 21 888.7 1.000 14.3 N=C—N carbon atoms in gCN aromatic rings; carbonyl groups from the CC substrate 
01996-02a C 1s 289.6 1.9 14 166.8 1.000 9.2 Carboxylate/ester groups from the CC substrate 
01996-02a C 1s 294.4 1.5 243.2 1.000 0.2 Excitation of π-electrons 
01996-03b N 1s 398.6 2.0 43 847.3 1.676 17.3 Two-coordinated C=N—C nitrogen atoms in gCN 
01996-03b N 1s 399.7 1.9 23 916.7 1.676 9.4 Tertiary N-(C)3 nitrogen atoms in gCN 
01996-03b N 1s 401.1 1.8 7 815.9 1.676 3.1 N in uncondensed NHx (x = 1,2) groups 
01996-03b N 1s 404.5 4.7 2 579.3 1.676 1.0 Excitation of π-electrons 
01996-04c O 1s 530.4 2.4 20 953.2 2.881 4.9 Lattice oxygen in ZnO; carbonyl groups from the CC substrate 
01996-04c O 1s 531.5 2.0 53 803.4 2.881 12.6 Carboxylate/ester groups from the CC substrate 
01996-04c O 1s 533.0 2.0 14 028.0 2.881 3.3 Surface adsorbed water 
01996-05d Zn 2p3/2 1021.9 … 2 36 817.1 21.391 8.8 Zn(II) in ZnO 
01996-05 Zn 2p1/2 1045.0 … … … … Zn(II) in ZnO 
01996-06e Zn LMM 988.5 … … … … Zn(II) in ZnO 
01997-02a C 1s 284.8 1.9 17 872.4 1.000 12.4 Adventitious contamination and C—C bonds in the CC substrate 
01997-02a C 1s 286.4 2.1 13 311.9 1.000 9.2 C in C—NHx (x = 1,2) groups on gCN edges and adsorbed carbonates 
01997-02a C 1s 288.8 1.6 17 995.7 1.000 12.4 N=C—N carbon atoms in gCN aromatic rings 
01997-02a C 1s 289.6 1.9 11 771.2 1.000 8.1 Carboxylate/ester groups from the CC substrate 
01997-02a C 1s 294.4 2.1 677.9 1.000 0.5 Excitation of π-electrons 
01997-03b N 1s 398.6 1.9 33 455.1 1.676 14.0 Two-coordinated C=N—C nitrogen atoms in gCN 
01997-03b N 1s 399.8 1.7 18 481.7 1.676 7.7 Tertiary N—(C)3 nitrogen atoms in gCN 
01997-03b N 1s 401.2 1.8 7 580.6 1.676 3.2 N in uncondensed NHx (x = 1,2) amino groups 
01997-03b N 1s 404.4 3.9 3 132.5 1.676 1.3 Excitation of π-electrons 
01997-04c O 1s 530.1 2.3 33 874.3 2.881 8.4 Lattice oxygen in ZnFe2O4; carbonyl groups from the CC substrate 
01997-04c O 1s 531.5 2.1 35 292.7 2.881 8.8 Carboxylate/ester groups from the CC substrate 
01997-04c O 1s 533.0 1.9 14 267.3 2.881 3.6 Surface adsorbed water 
01997-05d Zn 2p3/2 1021.8 … 109 563.9 21.391 4.1 Zn(II) in ZnFe2O4 
01997-05 Zn 2p1/2 1044.6 … … … … Zn(II) in ZnFe2O4 
01997-06e Zn LMM 989.2 … … … … Zn(II) in ZnFe2O4 
01997-07f Fe 2p … … 116 887.0 14.353 6.3 Fe(III) in ZnFe2O4 
01997-07 Fe 2p3/2 711.0 … … … … Fe(III) in ZnFe2O4 
01997-07 Fe 2p1/2 724.5 … … … … Fe(III) in ZnFe2O4 
Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
01996-02a C 1s 284.8 2.0 10 336.3 1.000 6.7 Adventitious contamination and C—C bonds in the CC substrate 
01996-02a C 1s 286.3 2.1 14 166.8 1.000 9.2 C in uncondensed C—NHx (x = 1,2) groups 
01996-02a C 1s 288.8 1.6 21 888.7 1.000 14.3 N=C—N carbon atoms in gCN aromatic rings; carbonyl groups from the CC substrate 
01996-02a C 1s 289.6 1.9 14 166.8 1.000 9.2 Carboxylate/ester groups from the CC substrate 
01996-02a C 1s 294.4 1.5 243.2 1.000 0.2 Excitation of π-electrons 
01996-03b N 1s 398.6 2.0 43 847.3 1.676 17.3 Two-coordinated C=N—C nitrogen atoms in gCN 
01996-03b N 1s 399.7 1.9 23 916.7 1.676 9.4 Tertiary N-(C)3 nitrogen atoms in gCN 
01996-03b N 1s 401.1 1.8 7 815.9 1.676 3.1 N in uncondensed NHx (x = 1,2) groups 
01996-03b N 1s 404.5 4.7 2 579.3 1.676 1.0 Excitation of π-electrons 
01996-04c O 1s 530.4 2.4 20 953.2 2.881 4.9 Lattice oxygen in ZnO; carbonyl groups from the CC substrate 
01996-04c O 1s 531.5 2.0 53 803.4 2.881 12.6 Carboxylate/ester groups from the CC substrate 
01996-04c O 1s 533.0 2.0 14 028.0 2.881 3.3 Surface adsorbed water 
01996-05d Zn 2p3/2 1021.9 … 2 36 817.1 21.391 8.8 Zn(II) in ZnO 
01996-05 Zn 2p1/2 1045.0 … … … … Zn(II) in ZnO 
01996-06e Zn LMM 988.5 … … … … Zn(II) in ZnO 
01997-02a C 1s 284.8 1.9 17 872.4 1.000 12.4 Adventitious contamination and C—C bonds in the CC substrate 
01997-02a C 1s 286.4 2.1 13 311.9 1.000 9.2 C in C—NHx (x = 1,2) groups on gCN edges and adsorbed carbonates 
01997-02a C 1s 288.8 1.6 17 995.7 1.000 12.4 N=C—N carbon atoms in gCN aromatic rings 
01997-02a C 1s 289.6 1.9 11 771.2 1.000 8.1 Carboxylate/ester groups from the CC substrate 
01997-02a C 1s 294.4 2.1 677.9 1.000 0.5 Excitation of π-electrons 
01997-03b N 1s 398.6 1.9 33 455.1 1.676 14.0 Two-coordinated C=N—C nitrogen atoms in gCN 
01997-03b N 1s 399.8 1.7 18 481.7 1.676 7.7 Tertiary N—(C)3 nitrogen atoms in gCN 
01997-03b N 1s 401.2 1.8 7 580.6 1.676 3.2 N in uncondensed NHx (x = 1,2) amino groups 
01997-03b N 1s 404.4 3.9 3 132.5 1.676 1.3 Excitation of π-electrons 
01997-04c O 1s 530.1 2.3 33 874.3 2.881 8.4 Lattice oxygen in ZnFe2O4; carbonyl groups from the CC substrate 
01997-04c O 1s 531.5 2.1 35 292.7 2.881 8.8 Carboxylate/ester groups from the CC substrate 
01997-04c O 1s 533.0 1.9 14 267.3 2.881 3.6 Surface adsorbed water 
01997-05d Zn 2p3/2 1021.8 … 109 563.9 21.391 4.1 Zn(II) in ZnFe2O4 
01997-05 Zn 2p1/2 1044.6 … … … … Zn(II) in ZnFe2O4 
01997-06e Zn LMM 989.2 … … … … Zn(II) in ZnFe2O4 
01997-07f Fe 2p … … 116 887.0 14.353 6.3 Fe(III) in ZnFe2O4 
01997-07 Fe 2p3/2 711.0 … … … … Fe(III) in ZnFe2O4 
01997-07 Fe 2p1/2 724.5 … … … … Fe(III) in ZnFe2O4 
a

The sensitivity factor is referred to the whole C 1s signal.

b

The sensitivity factor is referred to the whole N 1s signal.

c

The sensitivity factor is referred to the whole O 1s signal.

d

The sensitivity factor and peak area are referred to the sole Zn 2p3/2 component.

e

Peak position is given in KE.

f

The sensitivity factor and peak area are referred to the whole Fe 2p signal.

Footnote to Spectra 01996-01 and 01997-01: For both accessions, wide-scan spectra revealed the presence of carbon and nitrogen, attributable to gCN and, for carbon, also to the CC substrate. Zinc and zinc + iron photoelectron peaks were in line with the occurrence of zinc(II) oxide and zinc ferrite in accessions # 01996 and 01997, respectively. The presence of oxygen can be related to lattice oxygen in ZnO and ZnFe2O4, but also to partially oxidized carbon species on the substrate surface. The presence of calcium as an impurity was also observed.

Footnote to Spectra 01996-02 and 01997-02: For both samples, the C 1s signal was fitted with five contributing bands. The first one, centered at 284.8 eV in both cases, was attributed to carbon from the support (Refs. 28 and 48) and to adventitious contamination (Refs. 23, 26, and 27). The signal at 286.3–286.4 eV was ascribed to C bonded to amino groups (−NHx, x = 1, 2), derived from an incomplete gCN thermal condensation (Refs. 9, 20, 28, 33, and 37). The third, intense signal, in both cases found at 288.8 eV, was due to C atoms in N—C=N moieties of the carbon nitride network (Refs. 23, 26–28, 33, and 37) and to carbonyl groups (Ref. 48) from the CC surface. The signal at 289.2 eV can be related to carboxylate and ester groups (Ref. 48), also present on the CC surface. Finally, the signal at 294.4 eV is ascribable to π-electron excitations (Refs. 28 and 48).

Footnote to Spectra 01996-03 and 01997-03: Four components contributed to the N 1s peaks. The most intense one, located at a BE of 398.6 eV, was attributed to bi-coordinated (C=N—C) N atoms in the gCN network (Refs. 23, 26–28, 33, and 37). The signal at 399.7–399.8 eV was assigned to tri-coordinated [N—(C)3] N atoms in graphitic carbon nitride [(Refs. 23, 26–28, 33, and 37)]. The band at 401.1–401.2 eV was due to terminal –NHx groups (x = 1, 2) (Refs. 26–28, 33, and 37), whereas the signal of π-electrons excitation appeared at ≈404.4 eV (Refs. 9, 20, 28, 33, and 37).

Footnote to Spectra 01996-04 and 01997-04: For both specimens, the O 1s photoelectron peak was deconvoluted with three bands. The first component, found at 530.4 (gCN-ZnO) and 530.1 (gCN-ZnFe2O4) eV, included the contribution of lattice oxygen from ZnO or ZnFe2O4 and O atoms in carbonyl groups from the CC substrate (Refs. 27 and 48–51). The most intense band, centered in both cases at 531.5 eV, was assigned to surface chemisorbed hydroxyl groups, together with ester and carbonate moieties on CC (Refs. 28 and 48). The last signal, located at 533.0 eV, was attributed to the presence of adsorbed water (Refs. 28, 52, and 53).

Footnote to Spectra 01996-05, 01997-05, 01996-06, and 01997-06: For both samples, Zn 2p photoelectron peaks displayed comparable spectral features. Position and spin-orbit splitting (SOS) were similar in the two cases [for gCN-ZnO: BE(Zn 2p3/2) = 1021.9 eV, SOS = 23.1 eV; for gCN-ZnFe2O4: BE(Zn 2p3/2) = 1021.8 eV; SOS = 22.8 eV], in line with the presence of Zn(II) (Refs. 23, 27, 52, and 53). Auger parameters α, [α = BE(Zn 2p3/2) + KE(Zn LMM)] were as follows: for gCN-ZnO: α = 2010.4 eV; for gCN-ZnFe2O4: α = 2011.0 eV (Refs. 54–56).

Footnote to Spectra 01997-07: Fe 2p signal shape and energy position [BE(Fe 2p3/2) = 711.0 eV; SOS = 13.5 eV] were in agreement with the previously reported data for ZnFe2O4 (Refs. 27 and 57).

ANALYZER CALIBRATION TABLE

Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Au 4f7/2 84.0 1.1 2 841 305.7 20.735 … Au(0) 
… Ag 3d5/2 368.3 0.9 1 316 206.9 22.131  Ag(0) 
… Cu 2p3/2 932.7 1.3 5 350 621.8 26.513 … Cu(0) 
Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Au 4f7/2 84.0 1.1 2 841 305.7 20.735 … Au(0) 
… Ag 3d5/2 368.3 0.9 1 316 206.9 22.131  Ag(0) 
… Cu 2p3/2 932.7 1.3 5 350 621.8 26.513 … Cu(0) 

Comment to Analyzer Calibration Table: The peaks were acquired after Ar+ erosion.

GUIDE TO FIGURES

Spectrum (Accession) #Element/TransitionVoltage ShiftaMultiplierBaselineComment #b
01996-01 Survey +1.08 
01996-02 C 1s +1.08 
01996-03 N 1s +1.08 
01996-04 O 1s +1.08 
01996-05 Zn 2p +1.08 
01996-06 Zn LMM −1.08 
01997-01 Survey +1.10 
01997-02 C 1s +1.10 
01997-03 N 1s +1.10 
01997-04 O 1s +1.10 
01997-05 Zn 2p +1.10 
01997-06 Zn LMM −1.10 
01997-07 Fe 2p +1.10 
Spectrum (Accession) #Element/TransitionVoltage ShiftaMultiplierBaselineComment #b
01996-01 Survey +1.08 
01996-02 C 1s +1.08 
01996-03 N 1s +1.08 
01996-04 O 1s +1.08 
01996-05 Zn 2p +1.08 
01996-06 Zn LMM −1.08 
01997-01 Survey +1.10 
01997-02 C 1s +1.10 
01997-03 N 1s +1.10 
01997-04 O 1s +1.10 
01997-05 Zn 2p +1.10 
01997-06 Zn LMM −1.10 
01997-07 Fe 2p +1.10 
a

Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

b

1. gCN-ZnO

2. gCN-ZnFe2O4

Accession #:01996-01
■ Specimen: gCN-ZnO 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 
Accession #:01996-01
■ Specimen: gCN-ZnO 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 

Accession #:01996-01
■ Specimen: gCN-ZnO 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 
Accession #:01996-01
■ Specimen: gCN-ZnO 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 

Close modal

  • Accession #: 01996-02

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 150.3 s

  • Total Elapsed Time: 165.3 s

  • Number of Scans: 6

  • Accession #: 01996-02

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 150.3 s

  • Total Elapsed Time: 165.3 s

  • Number of Scans: 6

Close modal

  • Accession #: 01996-03

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: N 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 126.4 s

  • Total Elapsed Time: 139.0 s

  • Number of Scans: 7

  • Accession #: 01996-03

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: N 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 126.4 s

  • Total Elapsed Time: 139.0 s

  • Number of Scans: 7

Close modal

  • Accession #: 01996-04

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 120.3 s

  • Total Elapsed Time: 132.3 s

  • Number of Scans: 6

  • Accession #: 01996-04

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 120.3 s

  • Total Elapsed Time: 132.3 s

  • Number of Scans: 6

Close modal

  • Accession #: 01996-05

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: Zn 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 300.3 s

  • Total Elapsed Time: 330.3 s

  • Number of Scans: 6

  • Accession #: 01996-05

  • Specimen: gCN-ZnO

  • Technique: XPS

  • Spectral Region: Zn 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 300.3 s

  • Total Elapsed Time: 330.3 s

  • Number of Scans: 6

Close modal

  • Accession #: 01996-06

  • Specimen: gCN-ZnO

  • Technique: XAES

  • Spectral Region: Zn LMM

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 350.5 s

  • Total Elapsed Time: 385.6 s

  • Number of Scans: 10

  • Accession #: 01996-06

  • Specimen: gCN-ZnO

  • Technique: XAES

  • Spectral Region: Zn LMM

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 350.5 s

  • Total Elapsed Time: 385.6 s

  • Number of Scans: 10

Close modal

Accession #:01997-01
■ Specimen: gCN-ZnFe2O4 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 
Accession #:01997-01
■ Specimen: gCN-ZnFe2O4 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 

Accession #:01997-01
■ Specimen: gCN-ZnFe2O4 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 
Accession #:01997-01
■ Specimen: gCN-ZnFe2O4 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: ThermoFisher Scientific Escalab Xi+ 
Excitation Source: Al Kα 
Source Energy: 1486.6 eV 
Source Strength: 200 W 
Source Size: 200 × 500 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 55° 
Emission Angle: 0° 
Analyzer Pass Energy: 200 eV 
Instrument Resolution: 2.0 eV 
Total Signal Accumulation Time: 204.2 s 
Total Elapsed Time: 224.6 s 
Number of Scans: 

Close modal

  • Accession #: 01997-02

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 150.3 s

  • Total Elapsed Time: 165.3 s

  • Number of Scans: 6

  • Accession #: 01997-02

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 150.3 s

  • Total Elapsed Time: 165.3 s

  • Number of Scans: 6

Close modal

  • Accession #: 01997-03

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: N 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 126.4 s

  • Total Elapsed Time: 139.0 s

  • Number of Scans: 7

  • Accession #: 01997-03

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: N 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 126.4 s

  • Total Elapsed Time: 139.0 s

  • Number of Scans: 7

Close modal

  • Accession #: 01997-04

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 120.3 s

  • Total Elapsed Time: 132.3 s

  • Number of Scans: 6

  • Accession #: 01997-04

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 120.3 s

  • Total Elapsed Time: 132.3 s

  • Number of Scans: 6

Close modal

  • Accession #: 01997-05

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: Zn 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 500.5 s

  • Total Elapsed Time: 550.6 s

  • Number of Scans: 10

  • Accession #: 01997-05

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: Zn 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 500.5 s

  • Total Elapsed Time: 550.6 s

  • Number of Scans: 10

Close modal

  • Accession #: 01997-06

  • Specimen: gCN-ZnFe2O4

  • Technique: XAES

  • Spectral Region: Zn LMM

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 490.7 s

  • Total Elapsed Time: 539.8 s

  • Number of Scans: 14

  • Accession #: 01997-06

  • Specimen: gCN-ZnFe2O4

  • Technique: XAES

  • Spectral Region: Zn LMM

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 490.7 s

  • Total Elapsed Time: 539.8 s

  • Number of Scans: 14

Close modal

  • Accession #: 01997-07

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: Fe 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 600.8 s

  • Total Elapsed Time: 660.8 s

  • Number of Scans: 15

  • Accession #: 01997-07

  • Specimen: gCN-ZnFe2O4

  • Technique: XPS

  • Spectral Region: Fe 2p

  • Instrument: ThermoFisher Scientific Escalab Xi+

  • Excitation Source: Al Kα

  • Source Energy: 1486.6 eV

  • Source Strength: 200 W

  • Source Size: 200 × 500 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 55°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 50 eV

  • Instrument Resolution: 0.5 eV

  • Total Signal Accumulation Time: 600.8 s

  • Total Elapsed Time: 660.8 s

  • Number of Scans: 15

Close modal

This work was financially supported by CNR (Progetti di Ricerca @CNR—avviso 2020—ASSIST), Padova University (P-DiSC#02BIRD2023-UNIPD RIGENERA, DOR 2021–2024), INSTM Consortium (INSTM21PDGASPAROTTO-NANOMAT, INSTM21PDBARMAC-ATENA), and PRIN 2022474YE8 SCI-TROPHY project (financed by the European Union - Next Generation EU—Bando PRIN 2022–M4.C2.1.1). The instrumental apparatus used in this work was funded by “Sviluppo delle infrastrutture e programma biennale degli interventi del Consiglio Nazionale delle Ricerche (2019).”

The authors have no conflicts to disclose.

Giacomo Marchiori: Investigation (lead); Software (equal); Validation (equal); Writing – review & editing (lead). Mattia Brugia: Investigation (equal); Software (equal); Validation (equal); Writing – review & editing (equal). Tommaso Sturaro: Data curation (equal); Methodology (equal); Validation (equal); Visualization (equal). Mattia Benedet: Data curation (equal); Methodology (equal); Validation (equal); Visualization (equal). Davide Barreca: Conceptualization (lead); Formal analysis (lead); Funding acquisition (lead); Supervision (equal); Writing – review & editing (lead). Alberto Gasparotto: Data curation (lead); Formal analysis (lead); Funding acquisition (equal); Investigation (equal); Methodology (equal); Writing – original draft (lead). Gian Andrea Rizzi: Data curation (equal); Funding acquisition (equal); Investigation (equal); Visualization (equal); Writing – review & editing (equal). Chiara Maccato: Formal analysis (equal); Funding acquisition (lead); Methodology (equal); Supervision (equal); Visualization (equal); Writing – review & editing (equal).

The data that support the findings of this study are available within the article and its supplementary material.

1.
2.
X.
Zou
,
Z.
Sun
, and
Y. H.
Hu
,
J. Mater. Chem. A
8
,
21474
(
2020
).
3.
A.
Sudhaik
,
P.
Raizada
,
P.
Shandilya
,
D.-Y.
Jeong
,
J.-H.
Lim
, and
P.
Singh
,
J. Ind. Eng. Chem.
67
,
28
(
2018
).
4.
Y.
Shen
,
A. J.
Dos santos-Garcia
, and
M. J.
Martín de Vidales
,
Processes
9
,
66
(
2021
).
5.
J.
Zhu
,
P.
Xiao
,
H.
Li
, and
S. A. C.
Carabineiro
,
ACS Appl. Mater. Interfaces
6
,
16449
(
2014
).
6.
S.
Cao
,
J.
Low
,
J.
Yu
, and
M.
Jaroniec
,
Adv. Mater.
27
,
2150
(
2015
).
7.
J.
Wang
and
S.
Wang
,
Coord. Chem. Rev.
453
,
214338
(
2022
).
8.
M. Z.
Rahman
and
C. B.
Mullins
,
Acc. Chem. Res.
52
,
248
(
2019
).
9.
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
N.
Gauquelin
,
A.
Orekhov
,
J.
Verbeeck
,
C.
Maccato
, and
D.
Barreca
,
Appl. Surf. Sci.
618
,
156652
(
2023
).
10.
S.
Yang
,
Y.
Gong
,
J.
Zhang
,
L.
Zhan
,
L.
Ma
,
Z.
Fang
,
R.
Vajtai
,
X.
Wang
, and
P. M.
Ajayan
,
Adv. Mater.
25
,
2452
(
2013
).
11.
L.
Jiang
,
X.
Yuan
,
Y.
Pan
,
J.
Liang
,
G.
Zeng
,
Z.
Wu
, and
H.
Wang
,
Appl. Catal., B
217
,
388
(
2017
).
12.
J.
Yang
,
Z.
Ji
, and
S.
Zhang
,
ACS Appl. Energy Mater.
6
,
3401
(
2023
).
13.
L.
Kong
,
J.
Wang
,
F.
Ma
,
M.
Sun
, and
J.
Quan
,
Appl. Mater. Today
16
,
388
(
2019
).
15.
Z.
Zhao
,
Y.
Sun
, and
F.
Dong
,
Nanoscale
7
,
15
(
2015
).
16.
L.
Wang
,
C.
Wang
,
X.
Hu
,
H.
Xue
, and
H.
Pang
,
Chem. Asian J.
11
,
3305
(
2016
).
17.
Y.
Gong
,
M.
Li
,
H.
Li
, and
Y.
Wang
,
Green Chem.
17
,
715
(
2015
).
18.
M.
Zhu
,
C.
Zhai
,
M.
Sun
,
Y.
Hu
,
B.
Yan
, and
Y.
Du
,
Appl. Catal., B
203
,
108
(
2017
).
19.
M.
Zhao
,
J.
Feng
,
W.
Yang
,
S.
Song
, and
H.
Zhang
,
ChemCatChem
13
,
1250
(
2020
).
20.
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
O. I.
Lebedev
,
L.
Girardi
,
C.
Maccato
, and
D.
Barreca
,
Chem. Eng. J.
448
,
137645
(
2022
).
21.
M.
Brugia
,
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
D.
Barreca
,
O. I.
Lebedev
, and
C.
Maccato
,
ChemSusChem
17
,
e202401041
(
2024
).
22.
J.
Liu
,
C.
Fan
,
X.
Xie
, and
L.
Jiang
,
Energy Technol.
9
,
2000842
(
2021
).
23.
S.
Le
,
T.
Jiang
,
Y.
Li
,
Q.
Zhao
,
Y.
Li
,
W.
Fang
, and
M.
Gong
,
Appl. Catal., B
200
,
601
(
2017
).
24.
P. L.
Meena
,
K.
Poswal
,
A. K.
Surela
, and
J. K.
Saini
,
Adv. Compos. Hybrid Mater.
6
,
16
(
2023
).
25.
L.
Chen
,
W.
Ma
,
J.
Dai
,
J.
Zhao
,
C.
Li
, and
Y.
Yan
,
J. Photochem. Photobiol., A: Chem.
328
,
24
(
2016
).
26.
S.
Borthakur
and
L.
Saikia
,
J. Environ. Chem. Eng.
7
,
103035
(
2019
).
27.
B.
Palanivel
,
S. devi
Mudisoodum perumal
,
T.
Maiyalagan
,
V.
Jayarman
,
C.
Ayyappan
, and
M.
Alagiri
,
Appl. Surf. Sci.
498
,
143807
(
2019
).
28.
E.
Scattolin
,
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
O. I.
Lebedev
,
D.
Barreca
, and
C.
Maccato
,
ChemSusChem
17
,
e202400948
(
2024
).
29.
Z. Q.
Li
,
C. J.
Lu
,
Z. P.
Xia
,
Y.
Zhou
, and
Z.
Luo
,
Carbon
45
,
1686
(
2007
).
30.
W.
Zhang
,
Q.
Zhang
,
F.
Dong
, and
Z.
Zhao
,
Int. J. Photoenergy
2013
,
685038
.
31.
Y.
Zheng
,
Z.
Zhang
, and
C.
Li
,
J. Photochem. Photobiol., A: Chem.
332
,
32
(
2017
).
32.
T. S.
Miller
,
A. B.
Jorge
,
T. M.
Suter
,
A.
Sella
,
F.
Cora
, and
P. F.
McMillan
,
Phys. Chem. Chem. Phys.
19
,
15613
(
2017
).
33.
M.
Benedet
,
A.
Gasparotto
,
G. A.
Rizzi
,
C.
Maccato
,
D.
Mariotti
,
R.
McGlynn
, and
D.
Barreca
,
Surf. Sci. Spectra
30
,
024018
(
2023
).
34.
K. M.
Cole
,
D. W.
Kirk
, and
S. J.
Thorpe
,
Surf. Sci. Spectra
28
,
014001
(
2021
).
35.
K. M.
Cole
,
D. W.
Kirk
, and
S. J.
Thorpe
,
Surf. Sci. Spectra
27
,
024013
(
2020
).
36.
D.
Briggs
and
M. P.
Seah
,
Practical Surface Analysis: Auger and X-ray Photoelectron Spectroscopy
, 2nd ed. (
Wiley
,
New York
,
1990
).
37.
M.
Benedet
,
G. A.
Rizzi
,
D.
Barreca
,
A.
Gasparotto
, and
C.
Maccato
,
Surf. Sci. Spectra
30
,
014004
(
2023
).
38.
40.
V.
Jain
,
M. C.
Biesinger
, and
M. R.
Linford
,
Appl. Surf. Sci.
447
,
548
(
2018
).
41.
M.
Benedet
,
A.
Gasparotto
,
G. A.
Rizzi
,
D.
Barreca
, and
C.
Maccato
,
Surf. Sci. Spectra
29
,
024001
(
2022
).
42.
G.
Marchiori
,
M.
Benedet
,
A.
Fasan
,
D.
Barreca
,
C.
Maccato
,
G. A.
Rizzi
, and
A.
Gasparotto
,
Surf. Sci. Spectra
31
,
024010
(
2024
).
43.
M.
Benedet
,
D.
Barreca
,
G. A.
Rizzi
,
C.
Maccato
,
J.-L.
Wree
,
A.
Devi
, and
A.
Gasparotto
,
Surf. Sci. Spectra
30
,
024021
(
2023
).
44.
E.
Scattolin
,
M.
Benedet
,
D.
Barreca
,
G. A.
Rizzi
,
A.
Gasparotto
, and
C.
Maccato
,
Surf. Sci. Spectra
31
,
024001
(
2024
).
45.
M.
Brugia
,
A.
Gasparotto
,
M.
Benedet
,
D.
Barreca
,
G. A.
Rizzi
, and
C.
Maccato
,
Surf. Sci. Spectra
31
,
024002
(
2024
).
46.
M.
Benedet
,
G. A.
Rizzi
,
L.
Marín
,
I.
Pavlovic
,
L.
Sánchez
,
D.
Barreca
, and
C.
Maccato
,
Surf. Sci. Spectra
31
,
024004
(
2024
).
47.
K.
Berresheim
,
M.
Mattern-Klosson
, and
M.
Wilmers
,
Fresenius J. Anal. Chem.
341
,
121
(
1991
).
48.
I.
Bertóti
,
M.
Mohai
, and
K.
László
,
Carbon
84
,
185
(
2015
).
49.
K.
Pandiselvi
,
H.
Fang
,
X.
Huang
,
J.
Wang
,
X.
Xu
, and
T.
Li
,
J. Hazard. Mater.
314
,
67
(
2016
).
50.
X.
Jiang
,
W.
Wang
,
H.
Wang
,
Z.-H.
He
,
Y.
Yang
,
K.
Wang
,
Z.-T.
Liu
, and
B.
Han
,
Green Chem.
24
,
7652
(
2022
).
51.
H.
Wang
,
Y.
Fu
,
X.
Liu
,
R.
Yang
,
Y.
Hu
,
D.
Liu
,
J.
Wan
, and
Z.
Zeng
,
Sens. Actuators, B: Chem.
377
,
132796
(
2023
).
52.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin Elmer Corporation
,
Eden Prairie
,
MN
,
1992
).
54.
L. S.
Dake
,
D. R.
Baer
, and
J. M.
Zachara
,
Surf. Interface Anal.
14
,
71
(
1989
).
55.
D.
Peeters
et al,
ACS Sustainable Chem. Eng.
5
,
2917
(
2017
).
56.
L.
Bigiani
,
A.
Gasparotto
,
G.
Carraro
,
C.
Maccato
, and
D.
Barreca
,
Surf. Sci. Spectra
25
,
024005
(
2018
).
57.
J.
Zhang
,
J.-M.
Song
,
H.-L.
Niu
,
C.-J.
Mao
,
S.-Y.
Zhang
, and
Y.-H.
Shen
,
Sens. Actuators, B: Chem.
221
,
55
(
2015
).