High-purity niningerite (MgS) was synthesized by BenchChem under vacuum conditions for use in laboratory simulations of solar-ion space weathering of sulfide minerals that are expected to be present on the surface of Mercury. MgS was initially characterized via x-ray photoelectron spectroscopy prior to investigations into the preferential loss of near-surface sulfur in niningerite with 2 keV H2+ irradiation. Survey and high-resolution (Mg 1s, Mg 2p, S 2p) x-ray photoelectron spectra of as-received magnesium sulfide powder (99.9%) are presented, including surface contaminants that originate from exposure to atmosphere (C 1s, O 1s). Minor impurities derived from sample synthesis (Al 2s, Al 2p) and packaging or processing (F 1s) are noted in the survey spectrum.

  • Accession #: 01995

  • Technique: XPS

  • Specimen: MgS

  • Instrument: PHI Versaprobe III

  • Major Elements in Spectra: Mg, S, O

  • Minor Elements in Spectra: C, Al, F

  • Published Spectra: 6

  • Spectral Category: Comparison

On Earth, magnesium sulfide does not form independently as a terrestrial mineral due to the availability of oxygen on Earth, but rather as a byproduct of the steelmaking process (Ref. 1) and finds applications in its synthesized form as a blue-green phosphor in the semiconductor industry (Refs. 2 and 3). Recently, there has been strong interest in this material related to advances in magnesium-sulfide energy storage as a cheaper, safer alternative to lithium-ion batteries (Refs. 4 and 5).

On planetary surfaces, sulfides are ubiquitous, found on rocky bodies like the Moon, asteroids, meteorites, Earth, and Mars, primarily as iron-bearing minerals like: troilite (FeS), pyrrhotite, pyrite (FeS2), and pentlandite [(Fe,Ni)9S8] (Refs. 6 and 7). However, an interest in iron-free sulfides with a special focus on magnesium and calcium sulfides was initiated based on MESSENGER data of Mercury's surface, where X-ray fluorescence spectra showed a strong correlation between locations high in sulfur with regions of enhanced signatures for magnesium and calcium (Refs. 8 and 9).

The interaction of space weathering with the surfaces of sulfides relevant to Mercury was investigated using X-ray photoelectron spectroscopy (XPS). The work presented here is related to a larger study where CaS and MgS samples were irradiated with solar-wind-type ion species at characteristic solar wind speeds to investigate the formation of metallic capping layers (Ref. 10), observed in iron metal sulfides, that do not predominate on Mercury.

Sample handling of sulfide materials is critical for surface analytical investigations, as MgS is highly reactive in air, rapidly forming magnesium sulfates with oxidation and hydroxides with humidity; while carbonates are produced with exposure to CO2 and adventitious carbon. Fluorine contamination can occur during sample synthesis and processing in systems that utilize fluorocarbon O-rings or Teflon seals, adhesives, HF-etched surfaces, or are enclosed in heat-sealed Teflon bags (Ref. 11). Thus, MgS is necessarily synthesized in vacuum, then ground and packed in a glovebox with O2 and H2O concentrations below 20 ppm. Upon receival, the MgS container was opened in an inert (N2) environment and pellets were prepared by pressing powder material in 8-mm diameter Al sample cups within a N2-purged glove-bag prior to XPS analysis.

Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

CAS Registry #: 12032-36-9

Specimen Characteristics: Homogeneous; powder; polycrystalline; semiconductor; inorganic compound; powder

Chemical Name: Magnesium Sulfide

Source: BenchChem, 5999 Trade Center Dr, Austin, TX 78744

Composition: MgS

Form: 99.9% purity powder MgS

Structure: Halite (cubic), Fm-3m

History and Significance: The specimen was received in a vacuum-packed plastic container and cold stored, unopened at ∼10 °C in a sample refrigerator. The sample was opened and prepared in a N2-purged glove tent (∼15 min).

As Received Condition: Eggshell white powder. Bulk chemical analysis shows Mg and S, with Al, C, and O.

Analyzed Region: Approximate center of pressed pellet.

Ex Situ Preparation/Mounting: ∼0.1 g of material was pressed at 1500 PSI into an 8-mm diameter aluminum cup between two, clean, stainless-steel plates; the filled cup was subsequently mounted to a 304 stainless steel sample platen and held in place by double-sided permanent scotch tape.

In Situ Preparation: None

Charge Control: Dual-beam charge compensation is delivered by both an electron flood source (1 eV, 20 μA) and a floating-column ion source (H2+ 10 eV, 7 mA) during XPS analysis.

Temp. During Analysis: 298 K

Pressure During Analysis: 3.0 × 10−6 Pa

Pre-analysis Beam Exposure: 0 s

Manufacturer and Model: PHI Versaprobe III

Analyzer Type: Spherical sector

Detector: Multichannel plate resistive

Number of Detector Elements: 128

Analyzer Mode: Constant pass energy

Throughput (T = EN): N = 0

Excitation Source Window: 2.4 μm Al window

Excitation Source: Al Kα monochromatic

Source Energy: 1486.6 eV

Source Strength: 42.13 W

Source Beam Size: 200 μm diameter

Signal Mode: Multichannel direct

Incident Angle:

Source-to-Analyzer Angle: 45°

Emission Angle: 45°

Specimen Azimuthal Angle: −°

Acceptance Angle from Analyzer Axis:

Analyzer Angular Acceptance Width: 5° × 5°

Manufacturer and Model: PHI floating-column electron-bombardment differentially pumped ion source.

Energy: 10 eV

Current: N/A

Current Measurement Method: Faraday cup

Sputtering Species and Charge: H2+

Spot Size (unrastered): ∼1000 μm

Raster Size: 0 × 0 μm2

Incident Angle: 60°

Polar Angle: 69.3°

Azimuthal Angle: 270°

Comment: No sputter cleaning was done prior to sample analysis. Ion gun is used exclusively for sample neutralization and parameters reflect settings for neutralization. For Au, Ag, and Cu calibration spectra, samples were irradiated for 30 min with 3 keV Ar+ with 3 × 3 mm2 raster and Zalar rotation.

Energy Scale Correction: The binding energy scale was referenced to C 1s = 284.8 eV.

Recommended Energy Scale Shift: +1.9 eV

Peak Shape and Background Method: Symmetric Gaussian–Lorentzian functions were fit to data after Shirley background subtraction.

Quantitation Method: Elemental relative abundance is calculated in atomic percentage (at. %) using PHI multipak 9.8.0.19. Photoelectron peak areas were integrated between two user-selected endpoints, one located at a binding energy above and one below the peak; total peak area includes all counts between endpoints above the Shirley background, where the background function is defined by the identical endpoints. Relative sensitivity factors were calculated internally by PHI multipak, which utilizes a database of transition-specific Scofield photoelectron production cross sections convolved with source-analyzer geometric details and electron transmission efficiency, a function of pass energy. Relative concentration [C(i)] for each element is calculated as C(i) = [I(i)/SF(i)]/[I(1)/SF(1) + … + I(i)/SF(i) + … + I(n)/SF(n)], where I(i) is the peak intensity above background and SF(i) is the sensitivity factor for the transition.

SPECTRAL FEATURES TABLE

Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
01995-01a Al 2s, Al 2p … … … 0.256 2.32 … 
01995-01b F 1s … … … 1.000 1.81 
01995-02 S 2p 160.4 1.48 941 0.717 11.56 MgS doublet 
01995-02 S 2p 162.7 1.70 180 0.717 … S doublet 
01995-02 S 2p 166.9 1.44 35 0.717 … MgSO3 doublet 
01995-02 S 2p 167.8 1.70 54 0.717 … MgSO4 doublet 
01995-03 Mg 2p 49.9 1.66 800 0.167 18.29 MgS, MgO, MgCO3, MgSO3, MgSO4 
01995-04 Mg 1s 1303.8 2.06 4828 1.035 … MgS, MgO, MgCO3, MgSO3, MgSO4 
01995-05 O 1s 531.4 2.01 6648 0.733 50.70 MgO, MgCO3, MgSO3, MgSO4 
01995-06 C 1s 284.8 1.82 638 0.314 15.33 C-C 
01995-06 C 1s 288.9 3.02 143 0.314 … MgCO3 
Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
01995-01a Al 2s, Al 2p … … … 0.256 2.32 … 
01995-01b F 1s … … … 1.000 1.81 
01995-02 S 2p 160.4 1.48 941 0.717 11.56 MgS doublet 
01995-02 S 2p 162.7 1.70 180 0.717 … S doublet 
01995-02 S 2p 166.9 1.44 35 0.717 … MgSO3 doublet 
01995-02 S 2p 167.8 1.70 54 0.717 … MgSO4 doublet 
01995-03 Mg 2p 49.9 1.66 800 0.167 18.29 MgS, MgO, MgCO3, MgSO3, MgSO4 
01995-04 Mg 1s 1303.8 2.06 4828 1.035 … MgS, MgO, MgCO3, MgSO3, MgSO4 
01995-05 O 1s 531.4 2.01 6648 0.733 50.70 MgO, MgCO3, MgSO3, MgSO4 
01995-06 C 1s 284.8 1.82 638 0.314 15.33 C-C 
01995-06 C 1s 288.9 3.02 143 0.314 … MgCO3 
a

Al was found in the chemical analysis of the sample.

b

F is expected to originate from the vacuum sealing process (Ref. 11).

ANALYZER CALIBRATION TABLE

Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Au 4f7/2 83.99 0.78 26 680 6.805 … Gold metal 
… Ag 3d5/2 368.16 0.68 41 886 6.277 … Silver metal 
… Cu 2p 932.54 1.04 49 413 2.626 … Copper metal 
Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV counts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Au 4f7/2 83.99 0.78 26 680 6.805 … Gold metal 
… Ag 3d5/2 368.16 0.68 41 886 6.277 … Silver metal 
… Cu 2p 932.54 1.04 49 413 2.626 … Copper metal 

GUIDE TO FIGURES

Spectrum ID #Element/TransitionVoltage ShiftaMultiplierBaselineComment #
01995-01 Survey −1.9 – 
01995-02 S 2p −1.9 – 
01995-03 Mg 2p −1.9 – 
01995-04 Mg 1s −1.9 – 
01995-05 O 1s −1.9 – 
01995-06 C 1s −1.9 – 
Spectrum ID #Element/TransitionVoltage ShiftaMultiplierBaselineComment #
01995-01 Survey −1.9 – 
01995-02 S 2p −1.9 – 
01995-03 Mg 2p −1.9 – 
01995-04 Mg 1s −1.9 – 
01995-05 O 1s −1.9 – 
01995-06 C 1s −1.9 – 
a

Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

Accession #:01995-01
■ Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: PHI Versaprobe III 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 42.1 W 
Source Size: 200 × 200 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 0° 
Emission Angle: 45° 
Analyzer Pass Energy: 224 eV 
Instrument Resolution: 2.2 eV 
Total Signal Accumulation Time: 3375 s 
Total Elapsed Time: 3375 s 
Number of Scans: 10 
Comments: Data acquisition step size: 0.4 eV 
Accession #:01995-01
■ Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: PHI Versaprobe III 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 42.1 W 
Source Size: 200 × 200 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 0° 
Emission Angle: 45° 
Analyzer Pass Energy: 224 eV 
Instrument Resolution: 2.2 eV 
Total Signal Accumulation Time: 3375 s 
Total Elapsed Time: 3375 s 
Number of Scans: 10 
Comments: Data acquisition step size: 0.4 eV 

Accession #:01995-01
■ Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: PHI Versaprobe III 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 42.1 W 
Source Size: 200 × 200 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 0° 
Emission Angle: 45° 
Analyzer Pass Energy: 224 eV 
Instrument Resolution: 2.2 eV 
Total Signal Accumulation Time: 3375 s 
Total Elapsed Time: 3375 s 
Number of Scans: 10 
Comments: Data acquisition step size: 0.4 eV 
Accession #:01995-01
■ Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder 
■ Technique: XPS 
■ Spectral Region: Survey 
Instrument: PHI Versaprobe III 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 42.1 W 
Source Size: 200 × 200 μm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 0° 
Emission Angle: 45° 
Analyzer Pass Energy: 224 eV 
Instrument Resolution: 2.2 eV 
Total Signal Accumulation Time: 3375 s 
Total Elapsed Time: 3375 s 
Number of Scans: 10 
Comments: Data acquisition step size: 0.4 eV 

Close modal

  • Accession #: 01995-02

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: S 2p

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 2400 s

  • Total Elapsed Time: 6390 s

  • Number of Scans: 30

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

  • Accession #: 01995-02

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: S 2p

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 2400 s

  • Total Elapsed Time: 6390 s

  • Number of Scans: 30

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

Close modal

  • Accession #: 01995-03

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: Mg 2p

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 1800 s

  • Total Elapsed Time: 9999 s

  • Number of Scans: 30

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

  • Accession #: 01995-03

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: Mg 2p

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 1800 s

  • Total Elapsed Time: 9999 s

  • Number of Scans: 30

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

Close modal

  • Accession #: 01995-04

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: Mg 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 450 s

  • Total Elapsed Time: 10 452 s

  • Number of Scans: 10

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

  • Accession #: 01995-04

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: Mg 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 450 s

  • Total Elapsed Time: 10 452 s

  • Number of Scans: 10

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

Close modal

  • Accession #: 01995-05

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 600 s

  • Total Elapsed Time: 3978 s

  • Number of Scans: 10

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

  • Accession #: 01995-05

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 600 s

  • Total Elapsed Time: 3978 s

  • Number of Scans: 10

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

Close modal

  • Accession #: 01995-06

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 1800 s

  • Total Elapsed Time: 8190 s

  • Number of Scans: 40

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

  • Accession #: 01995-06

  • Specimen: Magnesium Sulfide (MgS) bulk Niningerite powder

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: PHI Versaprobe III

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 42.1 W

  • Source Size: 200 × 200 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 0°

  • Emission Angle: 45°

  • Analyzer Pass Energy: 26 eV

  • Instrument Resolution: 0.25 eV

  • Total Signal Accumulation Time: 1800 s

  • Total Elapsed Time: 8190 s

  • Number of Scans: 40

  • Comments: Total elapsed time includes previous scans in acquisition order. Data acquisition step size: 0.1 eV

Close modal

We thank the Swiss National Science Foundation Fund (No. P500PT_217998), the National Science Foundation Astronomy Program (No. 2009365), and the NASA Solar System Workings Program (No. 12000470-028) for financial support. XPS spectra were acquired at the University of Virginia Nanoscale Materials Characterization Facility (NMCF), supported in part by the School of Engineering and Applied Science.

The authors have no conflicts to disclose.

Noah Jäggi: Conceptualization (equal); Data curation (lead); Formal analysis (lead); Investigation (lead); Methodology (equal); Project administration (equal); Resources (supporting); Software (equal); Validation (equal); Visualization (lead); Writing – original draft (lead); Writing – review & editing (equal). Catherine A. Dukes: Conceptualization (equal); Data curation (supporting); Formal analysis (supporting); Investigation (supporting); Methodology (equal); Project administration (equal); Resources (lead); Software (equal); Supervision (lead); Validation (equal); Writing – review & editing (equal).

The data that support the findings of this study are available within the article and its supplementary material.

1.
E. T.
Turdogan
, Fundamentals of Steelmaking (
The Institute of Materials, London, UK
,
1996
), p.
298
.
2.
E.
Tiede
,
Ber. Dtsch. Chem. Ges.
49
,
1745
(
1916
).
3.
4.
H. S.
Kim
,
T. S.
Arthur
,
G. D.
Allred
,
J.
Zajicek
,
J. G.
Newman
,
A. E.
Rodnyansky
,
A. G.
Oliver
,
W. C.
Boggess
, and
F.
Muldoon
,
Nat. Commun.
2
,
427
(
2011
).
5.
X.
Jiang
,
J.
Wu
,
P.
Zhang
,
L.
Jiang
,
S.
Lu
,
X.
Zhao
, and
Z.
Yin
,
RSC Adv.
13
,
20926
(
2023
).
6.
J.
Papike
,
L.
Taylor
, and
S. B.
Simon
, “
Lunar minerals
,” in
Lunar Sourcebook-A User’s Guide to the Moon
, edited by
G. H.
Heiken
,
D. T.
Vaniman
, and
B. M.
French
(
Cambridge University
, Cambridge, UK,
1991
), pp.
121
182
.
7.
T. J.
McCoy
et al,
Meteorit. Planet. Sci.
36
,
1661
(
2001
).
9.
S. Z.
Weider
,
L. R.
Nittler
,
R. D.
Starr
,
T. J.
McCoy
,
K. R.
Stockstill-Cahill
,
P. K.
Byrne
,
B. W.
Denevi
,
J. W.
Head
, and
S. C.
Solomon
,
J. Geophys. Res.: Planets
117
,
1
, https://doi.org/10.1029/2012JE004153 (
2012
).
10.
N.
Jäggi
,
C. M.
Morel
,
A.
Mutzke
,
A. K.
Woodson
, and
C. A.
Dukes
,
55th Lunar and Planetary Science Conference
, The Woodlands, TX/virtual, March 11–15, 2024 (unpublished), Contribution No. 3040, id.1306.
11.
C. K.
Shearer
et al,
Space Sci. Rev.
220
,
62
(
2024
).