Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is increasingly used to analyze cultural heritage materials because it can simultaneously detect organic and inorganic materials while mapping them on a surface. The precise identification of a pigment in a specific layer of a painting or of remaining color on a statue can inform about the technique used or the time of manufacture as well as expose possible forgeries when anachronistic ingredients are identified. Reference spectra are required to confidently identify a given pigment using ToF-SIMS. This paper focuses on eight pigments containing copper, zinc, arsenic, or phosphate, all manufactured following historical recipes. The negative polarity ToF-SIMS reference spectra using a Bi3+ primary ion species are presented here. Presented together, these spectra and corresponding tables of secondary ions provide a valuable help in differentiating these pigments because copper, zinc, arsenic, or phosphate, combined with oxygen, share many mass interferences.

  • Accession#: 01947, 01948, 01949, 01950, 01951, 01952, 01953, and 01954

  • Technique: SIMS

  • Specimen: Peach black, Bone black, Realgar, Bristol yellow medium, Azurite, Malachite, Verdigris, and Zinc white

  • Instrument: IONTOF, TOF SIMS IV

  • Major Species in Spectra: O, H, C, Cu, Zn, P, Ca, As, S, V, Bi, and Cl

  • Minor Species in Spectra: Hydrocarbon contamination

  • Published Spectra: 8

  • Spectral Category: Reference

ToF-SIMS imaging can detect a wide range of elements, so colored minerals can be identified and mapped, given that reference spectra are available for reliable assignment. This paper provides a comparative ToF-SIMS spectral database for eight historical inorganic pigments, containing copper carbonate, zinc oxide or phosphates, vanadium oxide, calcium phosphates, or arsenic sulfide. Numerous possibilities for mass interferences exist between combinations of these elements. Without being able to refer to comparative datasets that provide an overview of the fragment ions for each pigment, it would be difficult to accurately identify one of them as an unknown pigment. Although not presented in the paper, titanium oxide, used as a pigment from the 1920s, may exhibit additional interferences to be considered as TiO has an m/z of 62.94.

The reference materials were supplied by specialized manufacturers selling pigments reproducing historical recipes as closely as possible, such as Kremer Pigmente GmbH. Pigments were available as finely ground powder of variable particle size (between one and a few tens of μm) conditioned in glass sealed vials. In paintings, pigment particles are dispersed in the binder and not dissolved, so all references were analyzed without any preparation treatment. Natural and synthetic pigments may contain impurities, and specimen compositions described below are the major components as found on the material data sheets provided by the suppliers.

A stainless-steel spatula was cleaned with propan-2-ol, and the powder was directly deposited on a 1 × 1 mm2 piece of a conductive double-sided tape (3M Electrically Conductive Adhesive Transfer Tape 9703) already fixed to a 1 cm × 1 cm × 0.125 mm stainless steel plate (17-7PH, Goodfellow Cambridge Limited, UK) fitting the dimensions of the sample holder. A hand press covered with a clean aluminum foil was applied onto the powder to fix it to the tape. This allowed to operate in the analysis chamber under ultrahigh vacuum (10−8–10−9 hPa) while ensuring a flat surface. For highly toxic pigments, such as the arsenic sulfide Realgar (#01949), a pellet with a flat surface was prepared using a press (Mini-Pellet Press P/N GS03940, Specac Ltd, UK) to limit dust formation.

All spectra were obtained on an IONTOF TOF SIMS IV equipped with a 25 keV bismuth liquid metal ion gun and an argon gas cluster ion beam (GCIB). Before all analyses, a 500 × 500 μm2 surface was cleaned using 1500–2000 Ar clusters with a kinetic energy of 20 keV (sputter ion dose of 2 × 1015 ions/cm2). Analyses were then performed on a 250 × 250 μm2 area centered in this larger cleaned area, rastered over 128 × 128 pixels using the high current bunched mode. Primary ion dose (25 keV Bi3+) was 4.35 × 1011 ions/cm2. Surface potential was compensated, and charging of the sample was compensated with the low-energetic 20 eV electrons of the flood gun.

Data were calibrated using sets of peaks as similar as possible for all spectra, using peaks that could be confidently identified. Copper and zinc both have distinctive isotopic patterns ensuring confident attribution of the peaks, so #01951, #01952, and #01953 data were calibrated using lists including Cu and Cu3O3 ions, and #01954 data were calibrated using ZnO2, Zn2O3, Zn3O4, 66Zn268ZnZn2O6, 66Zn268Zn2Zn4O8, and 66Zn268Zn2Zn5O10. When possible, data were calibrated using lists including main ions, namely, C, C2, C3, C8, C10, and C13 for #01947, CaO, SiO2, PO2, SiO3, and PO3 for #01948, and S2, AsS2, As2S3, and As3S4 for #01949. No bismuth- and vanadium-containing ions were used to calibrate the #01950 dataset since bismuth has no isotope and is close in mass to VP2O6. Hence, #01950 data were calibrated using hydrocarbon and chlorine ions CH, CH2, C2, Cl, C3, and C4H. These calibration lists allowed for a good coverage of the mass range of interest for each specimen, and they are fully detailed in the corresponding tables below. Pigments contain diverse metallic oxides, hydroxides, carbonates, and even hydrocarbons. They are found inside painting layers that are mostly organic materials. All these compounds do not follow the same ionization processes and have different ionization kinetics.1 In this context, the choice for the calibration ions is a crucial step to ensure proper peak attribution. If the analytical question aims at identifying the nature of a pigment particle, then the calibration must include inorganic ions, such as the list above, spanning all the mass range of interest and if possible of the same ion family as those of interest. However, if the analytical question focuses mainly on the identification of organic materials, the calibration must include known low-mass hydrocarbon ions. The safest strategy when interpreting data from a painting cross section would be to rely on several calibration sets adapted to the ions of interest and that can be confidently defined independently of the sample's unknowns.

Figures and tables presented below contain the major peaks for negative polarity. Each pigment is uniquely identified thanks to an accession number, and they are grouped according to their composition and described in the following section. Their historical relevance is briefly described based on current literature.2–6 The spectrum ID# refers to that number.

Specimen: Peach black (Kremer Pigmente Ref. 12010)

CAS Registry #: Unknown

Specimen Characteristics: Unknown homogeneity; solid; amorphous; dielectric; inorganic compound; powder

Chemical Name: Amorphous carbon

Source: Kremer Pigmente GmbH

Specimen Composition: Amorphous carbon (charred peach kernel)

Form: Ground pigment powder

History and Significance: Black pigments derived from charcoals are rarely detectable by the analytical techniques used to investigate pigments such as XRF, while carbon-based black pigments have been used in every society since the domestication of fire. Peach black, for instance, only requires the calcination of kernels. Identifying this pigment is of interest, as they are omnipresent in historical artistic practice. ToF-SIMS is able to map and identify micrometric particles of carbon-base pigments.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Bone black (Kremer Pigmente Ref. 47100)

CAS Registry #: 8021-99-6

Specimen Characteristics: Unknown homogeneity; solid; amorphous; dielectric; inorganic compound; powder

Chemical Name: Bone charcoal

Source: Kremer Pigmente GmbH

Specimen Composition: Amorphous carbon and calcium phosphates

Form: Ground pigment powder

History and Significance: Bone black is made by carbonization of animal bones at temperatures over 400 °C but not above 800 °C. It mainly consists of calcium phosphate and carbonized organics. It is very frequently used in paintings, especially in preparation layers.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Realgar/red orpiment (Kremer Pigmente Ref. 10800)

CAS Registry #: 1303-33-9

Specimen Characteristics: Unknown homogeneity; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Arsenic (III) sulfide (natural mineral)

Source: Kremer Pigmente GmbH

Specimen Composition: Natural arsenic sulfide α-As4S4

Form: Ground pigment powder

History and Significance: A mineral prized for its bright red color that was used until the beginning of the 19th century. Found in volcanic and geothermal regions, its geographic origin varies. It was found on luxurious articles in antiquity to show opulence and was used as ritual offerings and in cosmetics, despite its high toxicity. It exists in rare natural and synthetic forms. Its occurrence is difficult to investigate due to light instability, converting it to yellow pararealgar (As4S4), thereby often mistaken for other yellow As pigments unless crystalline phases can be differentiated by the analytical techniques used. Red realgar can be found in environments where the absence of light preserves it.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Because of the toxicity of arsenic sulfide, a pellet was prepared using a Specac Mini Pellet Press. A flat surface was obtained, and dust formation was limited when handling the sample. The pellet was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Bristol yellow medium (Kremer Pigmente Ref. 43111)

CAS Registry #: 7779-90-0 and 14059-33-7

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Trizinc bis(ortho)phosphate + bismuth vanadium tetraoxide

Source: Kremer Pigmente GmbH

Specimen Composition: Zn3(PO4)2 + BiVO4

Form: Ground pigment powder

History and Significance: Due to their toxicity, lead pigments have been gradually prohibited over the past two centuries. Alternative yellow pigments such as modified bismuth yellows (Bristol yellows) were produced to replace them. Bristol yellows have been used since the 20th century to imitate Naples yellow as they have similar optical properties. Copper and zinc compounds can have mass interference with Bristol yellow ions, so their distinction is of interest.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Azurite (Kremer Pigmente Ref. 10207)

CAS Registry #: 12069-69-1

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Basic copper (II) carbonate

Source: Kremer Pigmente GmbH

Specimen Composition: Cu3(CO3)2(OH)2

Form: Ground pigment powder

History and Significance: A natural blue to turquoise-blue-green copper carbonate that results from the erosion of copper deposits. It was used in many contexts over the centuries and was considered a fairly precious material.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Malachite, natural (Kremer Pigmente Ref. 10300)

CAS Registry #: 1319-53-5

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Basic cupric carbonate

Source: Kremer Pigmente GmbH

Specimen Composition: CuCO3⋅Cu(OH)2

Form: Ground pigment powder

History and Significance: A natural green to turquoise-green copper carbonate, which results from the erosion of copper deposits. It is one of the earliest known bright green pigments, and a dominant one until the mid-18th century. It was considered a fairly precious material. It consists of rather large spherical particles.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Verdigris, synthetic (Kremer Pigmente Ref. 44450)

CAS Registry #: 6046-93-1

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Copper-(II)-acetate-1-hydrate

Source: Kremer Pigmente GmbH

Specimen Composition: Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2O

Form: Ground pigment powder

History and Significance: A family of synthetic pigments, containing variations in copper acetate, with green to blue-green hues. Synthesized since antiquity, it is an acetate copper salt produced by the reaction of acetic acid with copper and has been particularly common in wine-growing regions. It has a characteristic vinegar odor. A better knowledge of the ion signal of Verdigris pigments is of interest. Indeed, considered unstable, it reacts with binders and other pigments forming soaps and other copper salts, respectively, making its identification in a painting often ambiguous. Degradation products result in a brown tint.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Specimen: Zinc white (Kremer Pigmente Ref. 46300)

CAS Registry #: 1314-13-2

Specimen Characteristics: Inhomogeneous; solid; unknown crystallinity; dielectric; inorganic compound; powder

Chemical Name: Zinc oxide

Source: Kremer Pigmente GmbH

Specimen Composition: ZnO

Form: Ground pigment powder

History and Significance: A widely used substitute for lead-containing whites that was first produced in the 19th century by Winsor & Newton (1834) with Michael Faraday.

As Received Condition: Ground pigment powders were stored in a sealed glass vial in a wooden box, protected from daylight. Stored at room temperature.

Analyzed Region: Areas of 250 × 250 μm2

Ex Situ Preparation/Mounting: Powder was deposited and pressed onto a conductive double-sided tape attached to stainless steel 1 × 1 cm2 plates. The resulting deposit of powder had a flat surface and was fixed in a suitable way for the vacuum chamber. The plate was directly mounted on a “backmount” sample holder (IONTOF).

In Situ Preparation: None

Charge Control Conditions and Procedures: A low-energy electron flood gun was used. Bias voltage between 20 and −30 V. Flood gun filament current of 2.35 A. Surface potential was corrected (sample dependent).

Temp. During Analysis: 300 K

Pressure During Analysis: Between 1 × 10−5 and 1 × 10−6 Pa

Pre-analysis Beam Exposure: Ar1500−2000, 20 keV, 2 × 1015 ions/cm2

Manufacturer and Model: IONTOF, TOF SIMS IV

Analyzer Type: Time-of-flight

Sample Rotation: No

Rotation Rate: 0 rpm

Oxygen Flood Source: None

Oxygen Flood Pressure: N/A

Other Flood Source: None

Other Flood Pressure: N/A

Unique Instrument Features Used: None

Energy Acceptance Window: 20 eV

Post-acceleration Voltage: 10 000 eV

Sample Bias: 10–20 eV

Specimen Normal-to-analyzer (Θe):

Ion source 1 of 2

Purpose of this Ion Source: Analysis beam

Ion Source Manufacturer: IONTOF GmbH

Ion Source Model: Liquid metal ion gun (LMIG) with bismuth cluster (25 keV)

Beam Mass Filter: Yes

Beam Species and Charge State: Bi3+

Beam Gating Used: Double pulsed + Bunched

Additional Beam Comments: None

Beam Voltage: 25 000 eV

Net Beam Voltage (impact voltage): 25 000 eV

Ion Pulse Width: 0.8–1.2 ns

Ion Pulse Rate: 5–10 kHz

DC Beam Current: ∼10 nA

Pulsed Beam Current: ∼0.0004 nA

Current Measurement Method: Faraday cup

Beam Diameter: ∼2 μm

Beam Raster Size: 250 × 250 μm2

Raster Pixel Dimensions: 128 × 128

Beam Incident Angle: 45°

Source-to-Analyzer Angle: 45°

Ion source 2 of 2

Purpose of this Ion Source: Sputtering beam

Ion Source Manufacturer: IONTOF GmbH

Ion Source Model: Argon gas cluster ion beam (GCIB)

Beam Mass Filter: Yes

Beam Species and Charge State: Arn+ with n = 1500–2000

Beam Gating Used: Wien filter

Additional Beam Comments: Used as sputter gun, not analysis mode.

Beam Voltage: 20 000 eV

Net Beam Voltage (impact voltage): 20 000 eV

Ion Pulse Width: N/A

Ion Pulse Rate: N/A

DC Beam Current: ∼10 nA

Pulsed Beam Current: N/A

Current Measurement Method: Faraday cup

Beam Diameter: ∼50 μm

Beam Raster Size: 500 × 500 μm2

Raster Pixel Dimensions: N/A

Beam Incident Angle: 45°

Source-to-Analyzer Angle: 45°

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01947-01 12.000 (−3.10) C Charcoal 
24.000 (−18.7) C2 Charcoal 
25.008 (−2.87) C2H Charcoal 
34.969 (−10.7) Cl — 
36.000 (−17.2) C3 Charcoal 
47.999 (−26.4) C4 Charcoal 
60.001 (8.18) C5 Charcoal 
62.966 (27.8) PO2 — 
63.972 (0.44) HPO2 — 
72.002 (17.1) C6 Charcoal 
78.962 (40.2) PO3 — 
79.967 (2.85) HPO3 — 
84.001 (3.17) C7 Charcoal 
96.000 (−15.0) C8 Charcoal 
107.999 (−15.4) C9 Charcoal 
119.998 (−19.0) C10 Charcoal 
121.009 (5.26) HC10 Charcoal 
131.998 (−19.3) C11 Charcoal 
143.998 (−16.1) C12 Charcoal 
145.009 (5.84) HC12 Charcoal 
155.999 (−12.8) C13 Charcoal 
167.997 (−20.2) C14 Charcoal 
169.010 (10.2) HC14 Charcoal 
179.998 (−12.5) C15 Charcoal 
191.996 (−23.4) C16 Charcoal 
193.007 (−9.01) C16H Charcoal 
203.994 (−34.1) C17 Charcoal 
217.009 (−34.3) C18H Charcoal 
227.995 (−26.6) C19 Charcoal 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01947-01 12.000 (−3.10) C Charcoal 
24.000 (−18.7) C2 Charcoal 
25.008 (−2.87) C2H Charcoal 
34.969 (−10.7) Cl — 
36.000 (−17.2) C3 Charcoal 
47.999 (−26.4) C4 Charcoal 
60.001 (8.18) C5 Charcoal 
62.966 (27.8) PO2 — 
63.972 (0.44) HPO2 — 
72.002 (17.1) C6 Charcoal 
78.962 (40.2) PO3 — 
79.967 (2.85) HPO3 — 
84.001 (3.17) C7 Charcoal 
96.000 (−15.0) C8 Charcoal 
107.999 (−15.4) C9 Charcoal 
119.998 (−19.0) C10 Charcoal 
121.009 (5.26) HC10 Charcoal 
131.998 (−19.3) C11 Charcoal 
143.998 (−16.1) C12 Charcoal 
145.009 (5.84) HC12 Charcoal 
155.999 (−12.8) C13 Charcoal 
167.997 (−20.2) C14 Charcoal 
169.010 (10.2) HC14 Charcoal 
179.998 (−12.5) C15 Charcoal 
191.996 (−23.4) C16 Charcoal 
193.007 (−9.01) C16H Charcoal 
203.994 (−34.1) C17 Charcoal 
217.009 (−34.3) C18H Charcoal 
227.995 (−26.6) C19 Charcoal 

Accession #:01947-01
■ Specimen: Peach Black—Kremer Pigmente Ref. 12010 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 1700 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: C, C2, C3, C8, C10, and C13 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: ToF-SIMS can be used to characterize carbon-based pigments. Both Cn and HCn are detected until n = 20, even if only the higher ones are labelled on the figure. 
Accession #:01947-01
■ Specimen: Peach Black—Kremer Pigmente Ref. 12010 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 1700 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: C, C2, C3, C8, C10, and C13 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: ToF-SIMS can be used to characterize carbon-based pigments. Both Cn and HCn are detected until n = 20, even if only the higher ones are labelled on the figure. 

Accession #:01947-01
■ Specimen: Peach Black—Kremer Pigmente Ref. 12010 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 1700 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: C, C2, C3, C8, C10, and C13 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: ToF-SIMS can be used to characterize carbon-based pigments. Both Cn and HCn are detected until n = 20, even if only the higher ones are labelled on the figure. 
Accession #:01947-01
■ Specimen: Peach Black—Kremer Pigmente Ref. 12010 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 1700 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: C, C2, C3, C8, C10, and C13 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: ToF-SIMS can be used to characterize carbon-based pigments. Both Cn and HCn are detected until n = 20, even if only the higher ones are labelled on the figure. 

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01948-01 12.001 (27.4) C Charred material 
15.996 (31.0) O — 
24.001 (21.4) C2 Charred material 
26.004 (20.2) CN Possible protein residue 
34.970 (2.50) Cl — 
41.999 (16.9) CNO Possible protein residue 
46.969 (−3.76) PO Calcium phosphate 
55.957 (−14.8) CaO Calcium phosphate 
59.966 (−25.1) SiO2 Aluminosilicate 
62.964 (3.05) PO2 Calcium phosphate 
75.964 (20.2) SiO3 Aluminosilicate 
78.961 (17.9) PO3 Calcium phosphate 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01948-01 12.001 (27.4) C Charred material 
15.996 (31.0) O — 
24.001 (21.4) C2 Charred material 
26.004 (20.2) CN Possible protein residue 
34.970 (2.50) Cl — 
41.999 (16.9) CNO Possible protein residue 
46.969 (−3.76) PO Calcium phosphate 
55.957 (−14.8) CaO Calcium phosphate 
59.966 (−25.1) SiO2 Aluminosilicate 
62.964 (3.05) PO2 Calcium phosphate 
75.964 (20.2) SiO3 Aluminosilicate 
78.961 (17.9) PO3 Calcium phosphate 

Accession #:01948-01
■ Specimen: Bone Black—Kremer Pigmente Ref. 47100 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O, CaO, SiO2, PO2, SiO3, and PO3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 292 s 
Comment: Notable low signal intensity for carbon clusters Cn compared to Peach black (#01947up to n = 6, and no Cn detection for n > 7). 
Accession #:01948-01
■ Specimen: Bone Black—Kremer Pigmente Ref. 47100 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O, CaO, SiO2, PO2, SiO3, and PO3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 292 s 
Comment: Notable low signal intensity for carbon clusters Cn compared to Peach black (#01947up to n = 6, and no Cn detection for n > 7). 

Accession #:01948-01
■ Specimen: Bone Black—Kremer Pigmente Ref. 47100 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O, CaO, SiO2, PO2, SiO3, and PO3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 292 s 
Comment: Notable low signal intensity for carbon clusters Cn compared to Peach black (#01947up to n = 6, and no Cn detection for n > 7). 
Accession #:01948-01
■ Specimen: Bone Black—Kremer Pigmente Ref. 47100 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O, CaO, SiO2, PO2, SiO3, and PO3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 292 s 
Comment: Notable low signal intensity for carbon clusters Cn compared to Peach black (#01947up to n = 6, and no Cn detection for n > 7). 

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01949-01 31.973 (9.88) S α-As4S4 
34.970 (21.7) Cl Natural impurity 
47.967 (−19.4) SO — 
63.946 (14.7) S2 α-As4S4 
74.923 (14.6) As α-As4S4 
79.960 (28.4) SO3 — 
90.915 (−21.5) AsO Arsenic oxide 
95.917 (3.55) S3 α-As4S4 
95.953 (9.50) SO4 — 
106.891 (−25.6) AsS α-As4S4 
106.914 (18.7) AsO2 Arsenic oxide 
122.890 (5.76) AsSO Arsenic oxide 
127.889 (0.58) S4 α-As4S4 
138.868 (14.5) AsS2 α-As4S4 
154.860 (−7.08) AsS2O Arsenic oxide 
170.838 (−3.81) AsS3 α-As4S4 
202.810 (−4.31) AsS4 α-As4S4 
213.784 (−16.6) As2S2 α-As4S4 
234.781 (−6.40) AsS5 α-As4S4 
245.756 (−14.1) As2S3 α-As4S4 
277.730 (−5.85) As2S4 α-As4S4 
288.710 (0.64) As3S2 α-As4S4 
309.704 (−1.19) As2S5 α-As4S4 
320.680 (−4.32) As3S3 α-As4S4 
336.681 (12.1) As3S3O Arsenic oxide 
341.673 (−9.75) As2S6 α-As4S4 
352.657 (10.3) As3S4 α-As4S4 
368.651 (6.43) As3S4O Arsenic oxide 
384.627 (2.52) As3S5 α-As4S4 
400.660 (11.8) As3S5O Arsenic oxide 
416.594 (−8.57) As3S6 α-As4S4 
427.561 (−33.1) As4S4 α-As4S4 
448.552 (−39.9) As3S7 α-As4S4 
470.510 (−30.9) As5S3 α-As4S4 
480.523 (−38.9) As3S8 α-As4S4 
502.496 (−1.95) As5S4 α-As4S4 
534.481 (−10.4) As5S4O2 Arsenic oxide 
560.615 (−26.9) PbAs3S4 Natural impurity 
592.624 (5.89) PbAs3S4O2 Natural impurity 
624.595 (5.15) PbAs3S5O2 Natural impurity 
656.560 (−6.62) PbAs3S6O2 Natural impurity 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01949-01 31.973 (9.88) S α-As4S4 
34.970 (21.7) Cl Natural impurity 
47.967 (−19.4) SO — 
63.946 (14.7) S2 α-As4S4 
74.923 (14.6) As α-As4S4 
79.960 (28.4) SO3 — 
90.915 (−21.5) AsO Arsenic oxide 
95.917 (3.55) S3 α-As4S4 
95.953 (9.50) SO4 — 
106.891 (−25.6) AsS α-As4S4 
106.914 (18.7) AsO2 Arsenic oxide 
122.890 (5.76) AsSO Arsenic oxide 
127.889 (0.58) S4 α-As4S4 
138.868 (14.5) AsS2 α-As4S4 
154.860 (−7.08) AsS2O Arsenic oxide 
170.838 (−3.81) AsS3 α-As4S4 
202.810 (−4.31) AsS4 α-As4S4 
213.784 (−16.6) As2S2 α-As4S4 
234.781 (−6.40) AsS5 α-As4S4 
245.756 (−14.1) As2S3 α-As4S4 
277.730 (−5.85) As2S4 α-As4S4 
288.710 (0.64) As3S2 α-As4S4 
309.704 (−1.19) As2S5 α-As4S4 
320.680 (−4.32) As3S3 α-As4S4 
336.681 (12.1) As3S3O Arsenic oxide 
341.673 (−9.75) As2S6 α-As4S4 
352.657 (10.3) As3S4 α-As4S4 
368.651 (6.43) As3S4O Arsenic oxide 
384.627 (2.52) As3S5 α-As4S4 
400.660 (11.8) As3S5O Arsenic oxide 
416.594 (−8.57) As3S6 α-As4S4 
427.561 (−33.1) As4S4 α-As4S4 
448.552 (−39.9) As3S7 α-As4S4 
470.510 (−30.9) As5S3 α-As4S4 
480.523 (−38.9) As3S8 α-As4S4 
502.496 (−1.95) As5S4 α-As4S4 
534.481 (−10.4) As5S4O2 Arsenic oxide 
560.615 (−26.9) PbAs3S4 Natural impurity 
592.624 (5.89) PbAs3S4O2 Natural impurity 
624.595 (5.15) PbAs3S5O2 Natural impurity 
656.560 (−6.62) PbAs3S6O2 Natural impurity 

Accession #:01949-01
■ Specimen: Realgar/red orpiment—Kremer Pigmente Ref. 10800 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: OH, S2, AsS2, As2S3, and As3S4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.34 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 21 nA 
DC Beam Current: 14.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 207 s 
Comment: Unstable, sensitive to light and oxygen. All oxygen-containing ions were localized in round-shaped areas of about 10 μm diameter dispersed within the analyzed surface of 250 × 250 μm2, allowing us to confidently determine whether a species contained oxygen or only sulfur. 
Accession #:01949-01
■ Specimen: Realgar/red orpiment—Kremer Pigmente Ref. 10800 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: OH, S2, AsS2, As2S3, and As3S4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.34 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 21 nA 
DC Beam Current: 14.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 207 s 
Comment: Unstable, sensitive to light and oxygen. All oxygen-containing ions were localized in round-shaped areas of about 10 μm diameter dispersed within the analyzed surface of 250 × 250 μm2, allowing us to confidently determine whether a species contained oxygen or only sulfur. 

Accession #:01949-01
■ Specimen: Realgar/red orpiment—Kremer Pigmente Ref. 10800 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: OH, S2, AsS2, As2S3, and As3S4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.34 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 21 nA 
DC Beam Current: 14.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 207 s 
Comment: Unstable, sensitive to light and oxygen. All oxygen-containing ions were localized in round-shaped areas of about 10 μm diameter dispersed within the analyzed surface of 250 × 250 μm2, allowing us to confidently determine whether a species contained oxygen or only sulfur. 
Accession #:01949-01
■ Specimen: Realgar/red orpiment—Kremer Pigmente Ref. 10800 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: OH, S2, AsS2, As2S3, and As3S4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.34 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 21 nA 
DC Beam Current: 14.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 207 s 
Comment: Unstable, sensitive to light and oxygen. All oxygen-containing ions were localized in round-shaped areas of about 10 μm diameter dispersed within the analyzed surface of 250 × 250 μm2, allowing us to confidently determine whether a species contained oxygen or only sulfur. 

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01950-01 26.004 (10.1) CN — 
42.000 (12.5) CNO — 
46.967 (−52.6) PO Zn3(PO4)2 
62.965 (19.3) PO2 Zn3(PO4)2 
78.961 (26.0) PO3 Zn3(PO4)2 
98.929 (−3.86) VO3 BiVO4 
114.923 (6.57) VO4 BiVO4 
181.863 (−0.50) V2O5 BiVO4 
264.796 (−1.62) V3O7 BiVO4 
280.793 (6.97) V3O8 BiVO4 
307.777 (−43.3) V2P2O9 Zn3(PO4)2 + BiVO4 
323.772 (−40.7) V2P2O10 Zn3(PO4)2 + BiVO4 
323.897 (−22.7) BiVO4 BiVO4 
347.732 (5.10) V4O9 BiVO4 
363.730 (11.2) V4O10 BiVO4 
390.704 (−50.8) V3P2O11 Zn3(PO4)2 + BiVO4 
406.701 (−44.6) V3P2O12 Zn3(PO4)2 + BiVO4 
422.690 (−56.6) V3P2O13Zn3(PO4)2 + BiVO4 
422.824 (−21.5) BiV2O7 BiVO4 
430.660 (−9.62) V5O11 BiVO4 
446.661 (3.97) V5O12 BiVO4 
462.655 (1.43) V5O13 BiVO4 
489.631 (−43.5) V4P2O14 Zn3(PO4)2 + BiVO4 
505.641 (−13.7) V4P2O15 Zn3(PO4)2 + BiVO4 
513.606 (15.6) V6O13 BiVO4 
529.606 (23.9) V6O14 BiVO4 
545.598 (17.9) V6O15 BiVO4 
572.571 (−26.5) V5P2O16 Zn3(PO4)2 + BiVO4 
588.592 (17.9) V5P2O17 Zn3(PO4)2 + BiVO4 
604.593 (27.8) V5P2O18 Zn3(PO4)2 + BiVO4 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01950-01 26.004 (10.1) CN — 
42.000 (12.5) CNO — 
46.967 (−52.6) PO Zn3(PO4)2 
62.965 (19.3) PO2 Zn3(PO4)2 
78.961 (26.0) PO3 Zn3(PO4)2 
98.929 (−3.86) VO3 BiVO4 
114.923 (6.57) VO4 BiVO4 
181.863 (−0.50) V2O5 BiVO4 
264.796 (−1.62) V3O7 BiVO4 
280.793 (6.97) V3O8 BiVO4 
307.777 (−43.3) V2P2O9 Zn3(PO4)2 + BiVO4 
323.772 (−40.7) V2P2O10 Zn3(PO4)2 + BiVO4 
323.897 (−22.7) BiVO4 BiVO4 
347.732 (5.10) V4O9 BiVO4 
363.730 (11.2) V4O10 BiVO4 
390.704 (−50.8) V3P2O11 Zn3(PO4)2 + BiVO4 
406.701 (−44.6) V3P2O12 Zn3(PO4)2 + BiVO4 
422.690 (−56.6) V3P2O13Zn3(PO4)2 + BiVO4 
422.824 (−21.5) BiV2O7 BiVO4 
430.660 (−9.62) V5O11 BiVO4 
446.661 (3.97) V5O12 BiVO4 
462.655 (1.43) V5O13 BiVO4 
489.631 (−43.5) V4P2O14 Zn3(PO4)2 + BiVO4 
505.641 (−13.7) V4P2O15 Zn3(PO4)2 + BiVO4 
513.606 (15.6) V6O13 BiVO4 
529.606 (23.9) V6O14 BiVO4 
545.598 (17.9) V6O15 BiVO4 
572.571 (−26.5) V5P2O16 Zn3(PO4)2 + BiVO4 
588.592 (17.9) V5P2O17 Zn3(PO4)2 + BiVO4 
604.593 (27.8) V5P2O18 Zn3(PO4)2 + BiVO4 

Accession #:01950-01
■ Specimen: Bristol Yellow—Kremer Pigmente Ref. 43111 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: CH, CH2, C2, Cl, C3, and C4H 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 17 nA 
DC Beam Current: 15.1 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 256 s 
Accession #:01950-01
■ Specimen: Bristol Yellow—Kremer Pigmente Ref. 43111 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: CH, CH2, C2, Cl, C3, and C4H 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 17 nA 
DC Beam Current: 15.1 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 256 s 

Accession #:01950-01
■ Specimen: Bristol Yellow—Kremer Pigmente Ref. 43111 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: CH, CH2, C2, Cl, C3, and C4H 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 17 nA 
DC Beam Current: 15.1 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 256 s 
Accession #:01950-01
■ Specimen: Bristol Yellow—Kremer Pigmente Ref. 43111 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 3500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: CH, CH2, C2, Cl, C3, and C4H 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 17 nA 
DC Beam Current: 15.1 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 256 s 

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01951-01 62.931 (10.7) Cu Cu3(CO3)2(OH)2 
76.985 (−37.5) CO3OH Cu3(CO3)2(OH)2 
78.925 (−0.79) CuO Cu3(CO3)2(OH)2 
94.919 (−11.5) CuO2 Cu3(CO3)2(OH)2 
95.930 (19.6) CuO2H Cu3(CO3)2(OH)2 
104.947 (59.4) CuC2H2O Cu3(CO3)2(OH)2 
118.943 (33.2) AlSiO4 Aluminosilicate interference 
122.915 (−3.49) CuCO3 Cu3(CO3)2(OH)2 
138.909 (−7.33) CuCO4 Cu3(CO3)2(OH)2 
154.902 (−18.3) CuO2CO3 Cu3(CO3)2(OH)2 
157.856 (39.9) Cu2O2 Cu3(CO3)2(OH)2 
173.843 (−6.04) Cu2O3 Cu3(CO3)2(OH)2 
178.913 (41.4) Si2AlO6 Aluminosilicate interference 
198.887 (−38.4) CuO(CO3)2 Cu3(CO3)2(OH)2 
217.835 (4.06) Cu2O2CO3 Cu3(CO3)2(OH)2 
236.772 (−7.29) Cu3O3 Cu3(CO3)2(OH)2 
258.842 (20.5) Cu2C3O6H Cu3(CO3)2(OH)2 
277.823 (14.6) Cu2O2(CO3)2 Cu3(CO3)2(OH)2 
296.759 (−0.68) Cu3O3CO3 Cu3(CO3)2(OH)2 
315.700 (5.09) Cu4O4 Cu3(CO3)2(OH)2 
358.764 (12.3) Cu3O(CO3)2(OH)2 Cu3(CO3)2(OH)2 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01951-01 62.931 (10.7) Cu Cu3(CO3)2(OH)2 
76.985 (−37.5) CO3OH Cu3(CO3)2(OH)2 
78.925 (−0.79) CuO Cu3(CO3)2(OH)2 
94.919 (−11.5) CuO2 Cu3(CO3)2(OH)2 
95.930 (19.6) CuO2H Cu3(CO3)2(OH)2 
104.947 (59.4) CuC2H2O Cu3(CO3)2(OH)2 
118.943 (33.2) AlSiO4 Aluminosilicate interference 
122.915 (−3.49) CuCO3 Cu3(CO3)2(OH)2 
138.909 (−7.33) CuCO4 Cu3(CO3)2(OH)2 
154.902 (−18.3) CuO2CO3 Cu3(CO3)2(OH)2 
157.856 (39.9) Cu2O2 Cu3(CO3)2(OH)2 
173.843 (−6.04) Cu2O3 Cu3(CO3)2(OH)2 
178.913 (41.4) Si2AlO6 Aluminosilicate interference 
198.887 (−38.4) CuO(CO3)2 Cu3(CO3)2(OH)2 
217.835 (4.06) Cu2O2CO3 Cu3(CO3)2(OH)2 
236.772 (−7.29) Cu3O3 Cu3(CO3)2(OH)2 
258.842 (20.5) Cu2C3O6H Cu3(CO3)2(OH)2 
277.823 (14.6) Cu2O2(CO3)2 Cu3(CO3)2(OH)2 
296.759 (−0.68) Cu3O3CO3 Cu3(CO3)2(OH)2 
315.700 (5.09) Cu4O4 Cu3(CO3)2(OH)2 
358.764 (12.3) Cu3O(CO3)2(OH)2 Cu3(CO3)2(OH)2 

Accession #:01951-01
■ Specimen: Azurite—Kremer Pigmente Ref. 10207 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: Aluminosilicates are also found in this sample, a possible impurity. Isotopic ratios for copper cluster ions are impacted by overlapping aluminosilicate ions. The peaks at m/z 59.97 and 75.97 are likely to be, respectively, CO3 and CO4 but also contain near isobaric interferences from, respectively, SiO2 and SiO3. They are, therefore, not listed in the table. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy
Accession #:01951-01
■ Specimen: Azurite—Kremer Pigmente Ref. 10207 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: Aluminosilicates are also found in this sample, a possible impurity. Isotopic ratios for copper cluster ions are impacted by overlapping aluminosilicate ions. The peaks at m/z 59.97 and 75.97 are likely to be, respectively, CO3 and CO4 but also contain near isobaric interferences from, respectively, SiO2 and SiO3. They are, therefore, not listed in the table. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy

Accession #:01951-01
■ Specimen: Azurite—Kremer Pigmente Ref. 10207 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: Aluminosilicates are also found in this sample, a possible impurity. Isotopic ratios for copper cluster ions are impacted by overlapping aluminosilicate ions. The peaks at m/z 59.97 and 75.97 are likely to be, respectively, CO3 and CO4 but also contain near isobaric interferences from, respectively, SiO2 and SiO3. They are, therefore, not listed in the table. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy
Accession #:01951-01
■ Specimen: Azurite—Kremer Pigmente Ref. 10207 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 13 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 335 s 
Comment: Aluminosilicates are also found in this sample, a possible impurity. Isotopic ratios for copper cluster ions are impacted by overlapping aluminosilicate ions. The peaks at m/z 59.97 and 75.97 are likely to be, respectively, CO3 and CO4 but also contain near isobaric interferences from, respectively, SiO2 and SiO3. They are, therefore, not listed in the table. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01952-01 34.970 (10.4) Cl — 
59.968 (7.61) SiO2 — 
62.930 (−7.31) Cu CuCO3⋅Cu(OH)2 
62.965 (6.21) PO2 — 
78.925 (−0.68) CuO CuCO3⋅Cu(OH)2 
78.963 (54.2) PO3 — 
94.921 (6.24) CuO2 CuCO3⋅Cu(OH)2 
95.929 (15.5) CuO2H Cu3(CO3)2(OH)2 
104.945 (38.3) CuC2H2O CuCO3⋅Cu(OH)2 
113.896 (17.8) CuOCl — 
120.940 (35.9) C2H2O2Cu CuCO3⋅Cu(OH)2 
122.918 (27.7) CuCO3 CuCO3⋅Cu(OH)2 
132.873 (39.9) CuCl2 — 
138.903 (−51.3) CuCO4 CuCO3⋅Cu(OH)2 
142.894 (−21.5) CuHCO2Cl — 
154.901 (−27.4) CuO2CO3 CuCO3⋅Cu(OH)2 
157.854 (25.1) Cu2O2 CuCO3⋅Cu(OH)2 
160.867 (25.0) CuCl2CO — 
173.847 (13.3) Cu2O3 CuCO3⋅Cu(OH)2 
192.847 (−29.7) CuCl2CO3 CuCO3⋅Cu(OH)2 
198.882 (−64.8) Cu2C2O2OH CuCO3⋅Cu(OH)2 
211.799 (34.1) Cu2Cl2O — 
217.827 (−32.7) Cu2O2CO3 CuCO3⋅Cu(OH)2 
220.821 (34.2) Cu2ClCO3 — 
236.774 (1.20) Cu3O3 CuCO3⋅Cu(OH)2 
255.784 (5.09) Cu2Cl2CO3 — 
296.752 (−22.3) Cu3O3CO3 CuCO3⋅Cu(OH)2 
299.734 (−11.7) Cu3ClCO4 — 
315.700 (5.68) Cu4O4 CuCO3⋅Cu(OH)2 
378.635 (16.8) Cu5O4 CuCO3⋅Cu(OH)2 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01952-01 34.970 (10.4) Cl — 
59.968 (7.61) SiO2 — 
62.930 (−7.31) Cu CuCO3⋅Cu(OH)2 
62.965 (6.21) PO2 — 
78.925 (−0.68) CuO CuCO3⋅Cu(OH)2 
78.963 (54.2) PO3 — 
94.921 (6.24) CuO2 CuCO3⋅Cu(OH)2 
95.929 (15.5) CuO2H Cu3(CO3)2(OH)2 
104.945 (38.3) CuC2H2O CuCO3⋅Cu(OH)2 
113.896 (17.8) CuOCl — 
120.940 (35.9) C2H2O2Cu CuCO3⋅Cu(OH)2 
122.918 (27.7) CuCO3 CuCO3⋅Cu(OH)2 
132.873 (39.9) CuCl2 — 
138.903 (−51.3) CuCO4 CuCO3⋅Cu(OH)2 
142.894 (−21.5) CuHCO2Cl — 
154.901 (−27.4) CuO2CO3 CuCO3⋅Cu(OH)2 
157.854 (25.1) Cu2O2 CuCO3⋅Cu(OH)2 
160.867 (25.0) CuCl2CO — 
173.847 (13.3) Cu2O3 CuCO3⋅Cu(OH)2 
192.847 (−29.7) CuCl2CO3 CuCO3⋅Cu(OH)2 
198.882 (−64.8) Cu2C2O2OH CuCO3⋅Cu(OH)2 
211.799 (34.1) Cu2Cl2O — 
217.827 (−32.7) Cu2O2CO3 CuCO3⋅Cu(OH)2 
220.821 (34.2) Cu2ClCO3 — 
236.774 (1.20) Cu3O3 CuCO3⋅Cu(OH)2 
255.784 (5.09) Cu2Cl2CO3 — 
296.752 (−22.3) Cu3O3CO3 CuCO3⋅Cu(OH)2 
299.734 (−11.7) Cu3ClCO4 — 
315.700 (5.68) Cu4O4 CuCO3⋅Cu(OH)2 
378.635 (16.8) Cu5O4 CuCO3⋅Cu(OH)2 

Accession #:01952-01
■ Specimen: Malachite, natural—Kremer Pigmente Ref. 10300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.00013 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 355 s 
Comment: Chlorine is detected, as well as copper/chlorine cluster ions. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy
Accession #:01952-01
■ Specimen: Malachite, natural—Kremer Pigmente Ref. 10300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.00013 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 355 s 
Comment: Chlorine is detected, as well as copper/chlorine cluster ions. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy

Accession #:01952-01
■ Specimen: Malachite, natural—Kremer Pigmente Ref. 10300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.00013 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 355 s 
Comment: Chlorine is detected, as well as copper/chlorine cluster ions. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy
Accession #:01952-01
■ Specimen: Malachite, natural—Kremer Pigmente Ref. 10300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2000 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, Cu, CuO2, Cu3O3, and Cu4O4 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.35 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.00013 nA 
DC Beam Current: 10.4 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 355 s 
Comment: Chlorine is detected, as well as copper/chlorine cluster ions. Additional series of peaks are commonly detected in this compound, with lower intensity. They can be attributed to other CuxOy

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01953-01 41.004 (14.9) C2OH Cu(CH3COO)2 
58.005 (−13.9) CO2CH2 Cu(CH3COO)2 
59.017 (44.0) C2H3O2 Cu(CH3COO)2 
59.983 (−37.0) CO3 Cu(CH3COO)2 
60.019 (−40.7) C2H3O2H Cu(CH3COO)2 
62.930 (−3.74) Cu Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
73.033 (48.7) C3H5O2 Cu(CH3COO)2 
75.013 (60.0) C2H3O3 Cu(CH3COO)2 
77.954 (0.64) CuCH3 Cu(CH3COO)2 
78.922 (−37.1) CuO Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
78.961 (20.1) PO3 — 
92.981 (40.5) CuC2H6 Cu(CH3COO)2 
102.921 (−43.5) CuC2O Cu(CH3COO)2 
104.944 (32.2) CuC2H2O Cu(CH3COO)2 
118.954 (−20.0) CuC3H4O Cu(CH3COO)2 
120.939 (28.9) C2H2O2Cu Cu(CH3COO)2 
122.951 (−2.71) CuC2H3O2H Cu(CH3COO)2 
136.972 (38.8) CuC3H5O2H Cu(CH3COO)2 
146.951 (−2.73) CuC4H4O2 Cu(CH3COO)2 
148.962 (−35.5) CuC4H6O2 Cu(CH3COO)2 
150.980 (−20.6) CuC4H8O2 Cu(CH3COO)2 
157.851 (8.73) Cu2O2 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
162.947 (7.60) CuC4H3O2OH Cu(CH3COO)2 
180.962 (27.1) CuC4H6O4 Cu(CH3COO)2 
194.942 (30.2) CuOC4H4O4 Cu(CH3COO)2 
200.871 (17.2) Cu2OC2H3O2 Cu(CH3COO)2 
215.863 (36.0) Cu2O2C2H2O2 Cu(CH3COO)2 
216.871 (35.2) Cu2O2C2H3O2 Cu(CH3COO)2 
217.866 (−20.5) CuC2H2O2CuO2H2 Cu(CH3COO)2 
224.860 (−36.3) Cu2C2OCH3COO Cu(CH3COO)2 
236.778 (17.7) Cu3O3 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
239.958 (−49.4) CuC6H9O6 Cu(CH3COO)2 
244.855 (−9.60) Cu2O3C3H3O2 Cu(CH3COO)2 
259.869 (−47.0) Cu2OC4H6O4 Cu(CH3COO)2 
278.788 (12.1) Cu3O2C2H2O2 Cu(CH3COO)2 
284.760 (1.94) Cu3O6 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
302.885 (−49.6) Cu2C6H9O6 Cu(CH3COO)2 
322.776 (3.07) Cu3O4C3H2O2 Cu(CH3COO)2 
356.718 (46.2) Cu4O3C2HO2 Cu(CH3COO)2 
381.810 (−37.8) Cu3OC6H9O6 Cu(CH3COO)2 
402.710 (8.67) Cu4O4C3H3O3 Cu(CH3COO)2 
420.633 (−14.9) Cu5O3C2H2O2 Cu(CH3COO)2 
440.820 (−39.1) Cu3OC8H12O8 Cu(CH3COO)2 
444.727 (21.2) Cu4O4C5H5O4 Cu(CH3COO)2 
464.650 (−31.7) Cu5O2C4H6O4 Cu(CH3COO)2 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01953-01 41.004 (14.9) C2OH Cu(CH3COO)2 
58.005 (−13.9) CO2CH2 Cu(CH3COO)2 
59.017 (44.0) C2H3O2 Cu(CH3COO)2 
59.983 (−37.0) CO3 Cu(CH3COO)2 
60.019 (−40.7) C2H3O2H Cu(CH3COO)2 
62.930 (−3.74) Cu Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
73.033 (48.7) C3H5O2 Cu(CH3COO)2 
75.013 (60.0) C2H3O3 Cu(CH3COO)2 
77.954 (0.64) CuCH3 Cu(CH3COO)2 
78.922 (−37.1) CuO Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
78.961 (20.1) PO3 — 
92.981 (40.5) CuC2H6 Cu(CH3COO)2 
102.921 (−43.5) CuC2O Cu(CH3COO)2 
104.944 (32.2) CuC2H2O Cu(CH3COO)2 
118.954 (−20.0) CuC3H4O Cu(CH3COO)2 
120.939 (28.9) C2H2O2Cu Cu(CH3COO)2 
122.951 (−2.71) CuC2H3O2H Cu(CH3COO)2 
136.972 (38.8) CuC3H5O2H Cu(CH3COO)2 
146.951 (−2.73) CuC4H4O2 Cu(CH3COO)2 
148.962 (−35.5) CuC4H6O2 Cu(CH3COO)2 
150.980 (−20.6) CuC4H8O2 Cu(CH3COO)2 
157.851 (8.73) Cu2O2 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
162.947 (7.60) CuC4H3O2OH Cu(CH3COO)2 
180.962 (27.1) CuC4H6O4 Cu(CH3COO)2 
194.942 (30.2) CuOC4H4O4 Cu(CH3COO)2 
200.871 (17.2) Cu2OC2H3O2 Cu(CH3COO)2 
215.863 (36.0) Cu2O2C2H2O2 Cu(CH3COO)2 
216.871 (35.2) Cu2O2C2H3O2 Cu(CH3COO)2 
217.866 (−20.5) CuC2H2O2CuO2H2 Cu(CH3COO)2 
224.860 (−36.3) Cu2C2OCH3COO Cu(CH3COO)2 
236.778 (17.7) Cu3O3 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
239.958 (−49.4) CuC6H9O6 Cu(CH3COO)2 
244.855 (−9.60) Cu2O3C3H3O2 Cu(CH3COO)2 
259.869 (−47.0) Cu2OC4H6O4 Cu(CH3COO)2 
278.788 (12.1) Cu3O2C2H2O2 Cu(CH3COO)2 
284.760 (1.94) Cu3O6 Cu(CH3COO)2⋅[Cu(OH)2]3⋅2H2
302.885 (−49.6) Cu2C6H9O6 Cu(CH3COO)2 
322.776 (3.07) Cu3O4C3H2O2 Cu(CH3COO)2 
356.718 (46.2) Cu4O3C2HO2 Cu(CH3COO)2 
381.810 (−37.8) Cu3OC6H9O6 Cu(CH3COO)2 
402.710 (8.67) Cu4O4C3H3O3 Cu(CH3COO)2 
420.633 (−14.9) Cu5O3C2H2O2 Cu(CH3COO)2 
440.820 (−39.1) Cu3OC8H12O8 Cu(CH3COO)2 
444.727 (21.2) Cu4O4C5H5O4 Cu(CH3COO)2 
464.650 (−31.7) Cu5O2C4H6O4 Cu(CH3COO)2 

Accession #:01953-01
■ Specimen: Verdigris, synthetic—Kremer Pigmente Ref. 44450 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O2, Cl, Cu, CuO, Cu2O2, and Cu3O3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 1.0 × 1013 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 6.7 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 31 nA 
DC Beam Current: 13.2 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 100 × 100 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 1995 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 617 s 
Comment: Surface was not flat, which impacted the mass resolution. Peak at m/z 59.02 attributed to acetate ion C2H3O2 was saturated. 
Accession #:01953-01
■ Specimen: Verdigris, synthetic—Kremer Pigmente Ref. 44450 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O2, Cl, Cu, CuO, Cu2O2, and Cu3O3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 1.0 × 1013 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 6.7 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 31 nA 
DC Beam Current: 13.2 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 100 × 100 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 1995 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 617 s 
Comment: Surface was not flat, which impacted the mass resolution. Peak at m/z 59.02 attributed to acetate ion C2H3O2 was saturated. 

Accession #:01953-01
■ Specimen: Verdigris, synthetic—Kremer Pigmente Ref. 44450 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O2, Cl, Cu, CuO, Cu2O2, and Cu3O3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 1.0 × 1013 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 6.7 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 31 nA 
DC Beam Current: 13.2 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 100 × 100 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 1995 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 617 s 
Comment: Surface was not flat, which impacted the mass resolution. Peak at m/z 59.02 attributed to acetate ion C2H3O2 was saturated. 
Accession #:01953-01
■ Specimen: Verdigris, synthetic—Kremer Pigmente Ref. 44450 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 2300 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: O2, Cl, Cu, CuO, Cu2O2, and Cu3O3 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 1.0 × 1013 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 6.7 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 31 nA 
DC Beam Current: 13.2 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 100 × 100 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 1995 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 617 s 
Comment: Surface was not flat, which impacted the mass resolution. Peak at m/z 59.02 attributed to acetate ion C2H3O2 was saturated. 

Close modal

SPECTRAL FEATURES TABLE

Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01954-01 79.925 (0.58) ZnO ZnO 
80.932 (−6.02) ZnOH — 
95.920 (0.39) ZnO2 ZnO 
96.927 (−5.50) ZnO2H — 
111.914 (−0.95) ZnO3 ZnO 
159.849 (−1.06) (ZnO)2 ZnO 
175.842 (−8.44) Zn2O3 ZnO 
176.851 (−3.88) Zn2O3H — 
191.839 (3.26) Zn2O4 ZnO 
239.775 (8.80) (ZnO)3 ZnO 
255.766 (−6.07) Zn3O4 ZnO 
256.775 (−1.65) Zn3O4H — 
319.701 (13.1) (ZnO)4 ZnO 
335.693 (4.34) Zn4O5 ZnO 
336.704 (12.6) Zn4O5H — 
399.625 (10.2) (ZnO)5 ZnO 
415.611 (−11.0) Zn5O6 ZnO 
416.620 (−9.50) Zn5O6H — 
495.532 (−16.3) Zn6O7 ZnO 
496.543 (−10.2) Zn6O7H — 
Spectrum ID #Mass (Δm), DaSpeciesPeak Assignment
01954-01 79.925 (0.58) ZnO ZnO 
80.932 (−6.02) ZnOH — 
95.920 (0.39) ZnO2 ZnO 
96.927 (−5.50) ZnO2H — 
111.914 (−0.95) ZnO3 ZnO 
159.849 (−1.06) (ZnO)2 ZnO 
175.842 (−8.44) Zn2O3 ZnO 
176.851 (−3.88) Zn2O3H — 
191.839 (3.26) Zn2O4 ZnO 
239.775 (8.80) (ZnO)3 ZnO 
255.766 (−6.07) Zn3O4 ZnO 
256.775 (−1.65) Zn3O4H — 
319.701 (13.1) (ZnO)4 ZnO 
335.693 (4.34) Zn4O5 ZnO 
336.704 (12.6) Zn4O5H — 
399.625 (10.2) (ZnO)5 ZnO 
415.611 (−11.0) Zn5O6 ZnO 
416.620 (−9.50) Zn5O6H — 
495.532 (−16.3) Zn6O7 ZnO 
496.543 (−10.2) Zn6O7H — 

Accession #:01954-01
■ Specimen: Zinc White—Kremer Pigmente Ref. 46300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 4500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, ZnO2, Zn2O3, Zn3O4, 66Zn268ZnZn2O6, 66Zn68Zn2Zn4O8, and 66Zn268Zn2Zn5O10 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 309 s 
Comment: Distinctive isotopic pattern for Zn. Peaks attributed to O(ZnO)x are commonly present up to x = 10, with lower intensity. 
Accession #:01954-01
■ Specimen: Zinc White—Kremer Pigmente Ref. 46300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 4500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, ZnO2, Zn2O3, Zn3O4, 66Zn268ZnZn2O6, 66Zn68Zn2Zn4O8, and 66Zn268Zn2Zn5O10 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 309 s 
Comment: Distinctive isotopic pattern for Zn. Peaks attributed to O(ZnO)x are commonly present up to x = 10, with lower intensity. 

Accession #:01954-01
■ Specimen: Zinc White—Kremer Pigmente Ref. 46300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 4500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, ZnO2, Zn2O3, Zn3O4, 66Zn268ZnZn2O6, 66Zn68Zn2Zn4O8, and 66Zn268Zn2Zn5O10 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 309 s 
Comment: Distinctive isotopic pattern for Zn. Peaks attributed to O(ZnO)x are commonly present up to x = 10, with lower intensity. 
Accession #:01954-01
■ Specimen: Zinc White—Kremer Pigmente Ref. 46300 
■ Technique: SIMS 
Instrument: IONTOF, TOF SIMS IV 
Analyzer Type: Time of flight 
Analyzer Mass Resolving Power: 4500 m/Δm 
Mass Resolving Power Determined at: 25 Da 
Species Used for Mass Calibration: Cl, ZnO2, Zn2O3, Zn3O4, 66Zn268ZnZn2O6, 66Zn68Zn2Zn4O8, and 66Zn268Zn2Zn5O10 
Specimen Normal-to-Analyzer: 0° 
Source-to-Analyzer Angle: 45° 
Primary Beam Ion Gun: LMIG 
Primary Ion Species: Bi3+ 
Primary Ion Dose: 4.37 × 1011 ion/cm2 
Primary Ion Pulse Width: 0.8–1.2 ns 
Primary Ion Pulse Rate: 5 kHz 
Net Beam Voltage: 25 000 eV 
Pulsed Beam Current: 0.000 15 nA 
DC Beam Current: 14.7 nA 
Beam Diameter: ∼2 μ
Beam Raster Size: 250 × 250 μm2 
Beam Incident Angle: 45° 
Secondary Source Polarity: Negative 
Mass Range Minimum: 0 Da 
Mass Range Maximum: 3545 Da 
Spectrum Dead Time Corrected: Yes 
Total Spectral Acquisition Time: 309 s 
Comment: Distinctive isotopic pattern for Zn. Peaks attributed to O(ZnO)x are commonly present up to x = 10, with lower intensity. 

Close modal

This work was financially supported by the Agence Nationale de la Recherche (Grant No. ANR-2015-CE29-0007 DEFIMAGE). C.B. has received funding from the European Union’s Horizon Europe Research and Innovation Programme under the Marie Skłodowska-Curie Grant Agreement No 101108506. The authors thank Sven Kayser and Matthias Kleine-Boymann (IONTOF GmbH) for providing extended access to software SurfaceLab 7.3 that allowed thorough processing of the data.

The authors have no conflicts to disclose.

Caroline Bouvier: Investigation (lead); Writing – original draft (lead). Sebastiaan Van Nuffel: Investigation (equal); Writing – review & editing (lead). Alain Brunelle: Conceptualization (lead); Supervision (equal); Writing – review & editing (equal).

The data that support the findings of this study are available within the article and its supplementary material.

1.
R. G.
Cooks
and
K. L.
Bush
,
Int. J. Mass Spectrom. Ion Phys.
53
,
111
(
1983
).
2.
N.
Eastaugh
,
V.
Walsh
,
T.
Chaplin
, and
R.
Siddall
,
Pigment Compendium A Dictionary and Optical Microscopy of Historical Pigments
, 1st ed. (
Routledge
,
London
,
2008
).
3.
E.
Robert
and
L.
Feller
,
Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 1
(
Archetype Publications
,
London
,
1986
).
4.
A.
Roy
,
Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 2
(
Archetype Publications
,
London
,
1993
).
5.
E. W.
FitzHugh
,
Artists’ Pigments: A Handbook of Their History and Characteristics, Vol. 3
(
Archetype Publications
,
London
,
1997
).
6.
J. R.
Barnett
,
S.
Miller
, and
E.
Pearce
,
Opt. Laser Technol.
38
,
445
(
2006
).

Supplementary Material