In this article, we show the survey and H 1s spectra acquired with a photon energy of 400.02 eV and H2(g) electron-energy loss of Ag 3d5/2 spectra with a photon energy of 451.3 eV using high-resolution synchrotron-radiation NAP-XPS.

  • Accession#: 01690

  • Technique: XPS and EELS

  • Host Material: Hydrogen, H2(g)

  • Instrument: SPECS Phoibos 150R6 NAP

  • Major Elements in Spectra: H (Ag)

  • Minor Elements in Spectra: H

  • Published Spectra: 7

  • Spectra in Electronic Record: 7

  • Spectral Category: Comparison

The continuously increasing popularity of near-ambient-pressure x-ray photoelectron spectroscopy (NAP-XPS) at synchrotron facilities (Refs. 1–11) has renewed interest in gas-phase XPS. The introduction of commercial NAP-XPS systems based on traditional, lab-based x-ray sources has further increased the motivation to publish reference spectra for gas molecules (Refs. 12–18). To carefully analyze spectra and to obtain detailed insight into the surface in the presence of a gas phase, it is paramount to (1) correctly identify peaks directly stemming from the gas phase and to (2) understand how the interaction with the gas phase influences photoelectrons originating from the surface.

This contribution to the Focused Topic Collection: Near-ambient Pressure X-ray Photoelectron Spectroscopy presents the photoelectron spectra of H2(g). Atomic hydrogen has only one (partially) filled orbital, which in H2 forms a (filled) σ1s molecular orbital. The H 1s photoionization probability (or cross section) rapidly decreases with increasing photon energy, e.g., at the photon energy of Mg Kα (1253.6 eV) and Al Kα (1486.7 eV), the cross section to excite the H 1s orbital is ∼4000 and 5000 times lower, respectively, than to excite the C 1s orbital (Ref. 19). Therefore, using lab-sources, it is impracticable to measure the H 1s orbital, which has, incorrectly, lead to the conclusion that it is impossible to measure H 1s photoelectrons in XPS (Refs. 20–22).

Soft x-ray beamlines using undulators provide a tunable, intense x-ray source that allows measuring the H 1s orbital (Refs. 23 and 24). The lower photon energies achievable at these beamlines help the measurement of the H 1s orbital. For example, at the photon energy used in this study, 400 eV, the H 1s orbital is “only” a factor 2000 weaker than the C 1s. The use of low photon energies with an intense x-ray beam makes measuring the H 1s orbital feasible.

The presence of H2(g) in NAP-XPS can affect the photoelectron signal from the surface of the material; small features are discernable at the higher-binding-energy side of all peaks. These features are electron-energy loss features and are ascribed to electronic excitation of H2(g) by photoelectrons originating from the surface. The excitation corresponds to a loss of 12.6 ± 0.1 eV in agreement with values in the literature of 12.6 (Ref. 25) and 12.7 eV (Ref. 26). Their relative intensity to the main, zero-loss peak is highly pressure dependent (cf. Fig. N01690-03 at 67 Pa, Ref. 25 at 300 Pa, and Ref. 26 at 400 Pa). After evacuating gas-phase H2, the H2(g) loss feature disappears immediately (Fig. N01690-07).

The given analyzer resolution is based on the Gaussian full-width at half maximum (FWHM) of the Ag 3d5/2, fitted with a Voigt function, and collected with the same beamline and analyzer settings. As such, it reflects the total experimental resolution (beamline and analyzer).

Host Material: Hydrogen, H2(g)

CAS Registry #: 1333-74-0

Host Material Characteristics: Homogeneous; gas; amorphous; dielectric; inorganic compound; other

Chemical Name: Hydrogen, H2(g)

Source: Matheson research purity (99.999%)

Host Composition: Hydrogen, H2(g)

Form: Gas

Structure: HH, H—H

History & Significance: H2 is one of the most common reactants in heterogeneous catalysis and important as renewable fuel.

As Received Condition: Compressed gas cylinder

Analyzed Region: Hydrogen gas molecules encountered by the x-ray beam

Ex Situ Preparation/Mounting: N/A

In Situ Preparation: For the PdAg(111) sample, approximately 1 monolayer of Pd was evaporated on an Ag(111) single crystal surface, which was close to room temperature. To obtain the Ag 3d spectra in 01690-03, the surface was annealed to 475 K.

Charge Control: N/A

Temp. During Analysis: Room temperature

Pressure During Analysis: 146 Pa (survey/H 1s) and 67 Pa [H2(g) loss and Ag 3d]

Pre-analysis Beam Exposure: 30 s

Manufacturer and Model: SPECS Phoibos 150R6 NAP

Analyzer Type: Spherical sector

Detector: Surface Concept 1D-DLD detector (model number: 1D-DLD64_2-150HV)

Number of Detector Elements: 100

Analyzer Mode: Constant pass energy

Throughput (T = EN): N = −1

Excitation Source Window: 100-nm-thick SiNx coated with 5 nm Cr and 10 nm Au (SPI supplies)

Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II (Ref. 27)

Source Energy: 400.02 eV (survey/H 1s) and 451.3 eV [H2(g) loss and Ag 3d]

Source Strength: 1012–1013 photons/s

Source Beam Size: 16 × 70 μm2

Signal Mode: Multichannel direct

Incident Angle: N/A

Source-to-Analyzer Angle: 70°

Emission Angle: N/A

Specimen Azimuthal Angle: N/A

Acceptance Angle from Analyzer Axis: 22°

Analyzer Angular Acceptance Width: 44°

Energy Scale Correction: The binding-energy scale in spectra 0169-01 and 0169-02 was corrected for the work function of the detector and photon energy. The work function of the detector was determined by setting the kinetic energy of the Ag M4NN transition of a clean reference Ag(111) sample to 353.38 eV (Ref. 28). The photon energy was determined by setting the Ag 3d5/2 binding energy of a pure reference Ag(111) sample to 368.20 eV. This correction procedure yields the Fermi level of a reference Ag(111) crystal to be 0.00 eV.

The binding-energy scale in 01690-03 [Ag 3d and H2(g) loss] is relative to the Fermi level of an Ag(111) sample alloyed with a small amount of Pd. The Ag 3d5/2 peak position was 367.97 eV.

The kinetic-energy scale of 01690-07 (H loss feature) is relative to Ag 3d5/2 energy.

Fitting: The H2(g) loss feature was fitted with a Gaussian profile (FWHM = 1.6–1.7 eV).

Recommended Energy Scale Shift: 0 eV.

Peak Shape and Background Method: Gaussian [H2(g) loss] and Voigt peak shapes (H 1s in survey and Ag 3d). Linear (survey and H 1s) and Shirley [H2(g) loss and Ag 3d] background subtraction.

Quantitation Method: N/A

SPECTRAL FEATURES TABLE

Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area
(eV × cts/s)
Sensitivity FactorConcentration (at. %)Peak Assignment
01690-01a H 1s 12.1 1.58 202 … … H2(g) 
01690-02b H 1s 12.05 1.54 203 … … H2(g) 
01690-03c Ag 3d5/2 367.97 0.49 287 589 … … PdAg(111) 
01690-03d Ag 3d3/2 373.98 0.47 191 088 … … PdAg(111) 
01690-03e Ag 3d5/2       
H2(g) loss 380.51 1.56 14 759 … … H2(g)/PdAg(111) 
01690-06f Ag 3d5/2       
H2(g) loss −12.65 1.65 9008 … … H2(g)/PdAg(111) 
Spectrum ID #Element/TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area
(eV × cts/s)
Sensitivity FactorConcentration (at. %)Peak Assignment
01690-01a H 1s 12.1 1.58 202 … … H2(g) 
01690-02b H 1s 12.05 1.54 203 … … H2(g) 
01690-03c Ag 3d5/2 367.97 0.49 287 589 … … PdAg(111) 
01690-03d Ag 3d3/2 373.98 0.47 191 088 … … PdAg(111) 
01690-03e Ag 3d5/2       
H2(g) loss 380.51 1.56 14 759 … … H2(g)/PdAg(111) 
01690-06f Ag 3d5/2       
H2(g) loss −12.65 1.65 9008 … … H2(g)/PdAg(111) 
a

1.58 eV was obtained after subtraction of a linear background and by fitting with a Voigt function. The peak area of 202 eV × cts/s was obtained after subtraction of a linear background.

b

1.54 eV was obtained after subtraction of a linear background. The peak area of 203 eV × cts/s was obtained after subtraction of a linear background.

c

367.97 and 0.49 eV were obtained after subtraction of a Shirley background and by fitting with a Voigt function. The peak area of 287589 eV × cts/s was obtained after subtraction of a Shirley background.

d

373.98 and 0.47 eV were obtained after subtraction of a Shirley background and by fitting with a Voigt function. The peak area of 191088 eV × cts/s was obtained after subtraction of a Shirley background.

e

380.51 eV and 1.56 eV were obtained after subtraction of a Shirley background and by fitting with a Gaussian function. The peak area of 14759 eV × cts/s was obtained after subtraction of a Shirley background.

f

Peak energy value of −12.65 eV is indicated as kinetic energy relative to Ag 3d5/2. 1.65 eV and −12.65 eV were obtained by fitting with a Gaussian function. The peak area of 9008 eV × cts/s was obtained after subtraction of a Shirley background.

ANALYZER CALIBRATION TABLE

Spectrum ID #Element/ TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV × cts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Ag 3d5/2 368.20 0.64 … … … Ag(111) 
… Ag 3d5/2 367.97 0.48 … … … PdAg(111) 
Spectrum ID #Element/ TransitionPeak Energy (eV)Peak Width FWHM (eV)Peak Area (eV × cts/s)Sensitivity FactorConcentration (at. %)Peak Assignment
… Ag 3d5/2 368.20 0.64 … … … Ag(111) 
… Ag 3d5/2 367.97 0.48 … … … PdAg(111) 

GUIDE TO FIGURES

Spectrum (Accession) #Spectral RegionVoltage ShiftMultiplierBaselineComment #
01690-01 Survey H2(g) 
01690-02 H 1s H2(g) 
01690-03 Ag 3d H2(g)/PdAg(111) 
01690-04 Ag 3d H2(g)/PdAg(111) 
01690-05 Ag 3d H2(g)/PdAg(111) 
01690-06 Ag 3d H2(g)/PdAg(111) 
01690-07 Ag 3d H2(g)/PdAg(111) 
Spectrum (Accession) #Spectral RegionVoltage ShiftMultiplierBaselineComment #
01690-01 Survey H2(g) 
01690-02 H 1s H2(g) 
01690-03 Ag 3d H2(g)/PdAg(111) 
01690-04 Ag 3d H2(g)/PdAg(111) 
01690-05 Ag 3d H2(g)/PdAg(111) 
01690-06 Ag 3d H2(g)/PdAg(111) 
01690-07 Ag 3d H2(g)/PdAg(111) 

Accession #01690-01
Host Material: Hydrogen, H2(g) 
Technique: XPS 
Spectral Region: Survey 
Instrument: SPECS Phoibos 150R6 NAP 
Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II 
Source Energy: 400.02 eV 
Source Strength: 1012–1013 photon/s 
Source Size: 16 × 70 µm2 
Analyzer Type: spherical sector analyzer 
Incident Angle: N/A 
Emission Angle: N/A 
Analyzer Pass Energy: 30 eV 
Analyzer Resolution: 0.39 eV 
Total Elapsed Time: 60 s 
Number of Scans: 
Effective Detector Width: 100 eV 
Accession #01690-01
Host Material: Hydrogen, H2(g) 
Technique: XPS 
Spectral Region: Survey 
Instrument: SPECS Phoibos 150R6 NAP 
Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II 
Source Energy: 400.02 eV 
Source Strength: 1012–1013 photon/s 
Source Size: 16 × 70 µm2 
Analyzer Type: spherical sector analyzer 
Incident Angle: N/A 
Emission Angle: N/A 
Analyzer Pass Energy: 30 eV 
Analyzer Resolution: 0.39 eV 
Total Elapsed Time: 60 s 
Number of Scans: 
Effective Detector Width: 100 eV 

Accession #01690-01
Host Material: Hydrogen, H2(g) 
Technique: XPS 
Spectral Region: Survey 
Instrument: SPECS Phoibos 150R6 NAP 
Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II 
Source Energy: 400.02 eV 
Source Strength: 1012–1013 photon/s 
Source Size: 16 × 70 µm2 
Analyzer Type: spherical sector analyzer 
Incident Angle: N/A 
Emission Angle: N/A 
Analyzer Pass Energy: 30 eV 
Analyzer Resolution: 0.39 eV 
Total Elapsed Time: 60 s 
Number of Scans: 
Effective Detector Width: 100 eV 
Accession #01690-01
Host Material: Hydrogen, H2(g) 
Technique: XPS 
Spectral Region: Survey 
Instrument: SPECS Phoibos 150R6 NAP 
Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II 
Source Energy: 400.02 eV 
Source Strength: 1012–1013 photon/s 
Source Size: 16 × 70 µm2 
Analyzer Type: spherical sector analyzer 
Incident Angle: N/A 
Emission Angle: N/A 
Analyzer Pass Energy: 30 eV 
Analyzer Resolution: 0.39 eV 
Total Elapsed Time: 60 s 
Number of Scans: 
Effective Detector Width: 100 eV 

Close modal

  • Accession #:01690-02

  • Host Material: Hydrogen, H2(g)

  • Technique: XPS

  • Spectral Region: H 1s

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 400.02 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: N/A

  • Emission Angle: N/A

  • Analyzer Pass Energy: 30 eV

  • Analyzer Resolution: 0.39 eV

  • Total Elapsed Time: 545 s

  • Number of Scans: 30

  • Effective Detector Width: 5 eV

  • Accession #:01690-02

  • Host Material: Hydrogen, H2(g)

  • Technique: XPS

  • Spectral Region: H 1s

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 400.02 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: N/A

  • Emission Angle: N/A

  • Analyzer Pass Energy: 30 eV

  • Analyzer Resolution: 0.39 eV

  • Total Elapsed Time: 545 s

  • Number of Scans: 30

  • Effective Detector Width: 5 eV

Close modal

  • Accession #:01690-03

  • Host Material: Silver, Ag(111)

  • Technique: XPS

  • Spectral Region: Ag 3d/H2(g) loss

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 451.3 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: spherical sector

  • Incident Angle: 50° off normal (Ag 3d)

  • Emission Angle: 20° off normal (Ag 3d)

  • Analyzer Pass Energy: 10 eV

  • Analyzer Resolution: 0.21 eV

  • Total Elapsed Time: 152 s

  • Number of Scans: 3

  • Effective Detector Width: 5 eV

  • Accession #:01690-03

  • Host Material: Silver, Ag(111)

  • Technique: XPS

  • Spectral Region: Ag 3d/H2(g) loss

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 451.3 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: spherical sector

  • Incident Angle: 50° off normal (Ag 3d)

  • Emission Angle: 20° off normal (Ag 3d)

  • Analyzer Pass Energy: 10 eV

  • Analyzer Resolution: 0.21 eV

  • Total Elapsed Time: 152 s

  • Number of Scans: 3

  • Effective Detector Width: 5 eV

Close modal

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 451.3 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: N/A

  • Emission Angle: N/A

  • Analyzer Pass Energy 10 eV

  • Analyzer Resolution: 0.21 eV

  • Total Elapsed Time: 608 s

  • Number of Scans: 3

  • Effective Detector Width: 5 eV

  • Instrument: Specs Phoibos 150R6 NAP

  • Excitation Source: Elliptically polarizing undulator at beamline 23-ID-2 of the National Synchrotron Light Source II

  • Source Energy: 451.3 eV

  • Source Strength: 1012–1013 photon/s

  • Source Size: 16 × 70 μm2

  • Analyzer Type: Spherical sector

  • Incident Angle: N/A

  • Emission Angle: N/A

  • Analyzer Pass Energy 10 eV

  • Analyzer Resolution: 0.21 eV

  • Total Elapsed Time: 608 s

  • Number of Scans: 3

  • Effective Detector Width: 5 eV

Close modal

The staff of the IOS beamline, especially Iradwikanari Waluyo and Adrian Hunt, are gratefully acknowledged for their support. This work was supported as part of the Integrated Mesoscale Architectures for Sustainable Catalysis, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. DE-SC0012573. This research used resources of the IOS (23-ID-2) beamline of the National Synchrotron Light Source II and the Center for Functional Nanomaterials, which are U.S. Department of Energy (DOE) User Facilities at Brookhaven National Laboratory operated under Contract No. DE-SC0012704.

1.
G.
Held
 et al,
J. Synchrotron Radiat.
27
,
1153
(
2020
).
2.
M. E.
Grass
,
P. G.
Karlsson
,
F.
Aksoy
,
M.
Lundqvist
,
B.
Wannberg
,
B. S.
Mun
,
Z.
Hussain
, and
Z.
Liu
,
Rev. Sci. Instrum.
81
,
053106
(
2010
).
3.
S.
Zhu
 et al,
J. Synchrotron Radiat.
28
,
624
(
2021
).
4.
V.
Pérez-Dieste
,
L.
Aballe
,
S.
Ferrer
,
J.
Nicolàs
,
C.
Escudero
,
A.
Milán
, and
E.
Pellegrin
,
J. Phys. Conf. Ser.
425
,
072023
(
2013
).
5.
O.
Sekizawa
 et al,
J. Phys. Conf. Ser.
712
,
012142
(
2016
).
6.
R. M.
Palomino
,
E.
Stavitski
,
I.
Waluyo
,
Y. K.
Chen-Wiegart
,
M.
Abeykoon
,
J. T.
Sadowski
,
J. A.
Rodriguez
,
A. I.
Frenkel
, and
S. D.
Senanayake
,
Synchrotron Radiat. News
30
,
30
(
2017
).
7.
C. H.
Wang
,
S. T.
Chang
,
S. Y.
Chen
, and
Y. W.
Yang
,
AIP Conf. Proc.
2054
,
040012
(
2019
).
8.
J.
Cai
 et al,
Nucl. Sci. Tech.
30
,
81
(
2019
).
9.
C.
Schlueter
 et al,
AIP Conf. Proc.
2054
,
040010
(
2019
).
10.
S.
Urpelainen
 et al,
J. Synchrotron Radiat.
24
,
344
(
2017
).
11.
E.
Kokkonen
 et al,
J. Synchrotron Radiat.
28
,
588
(
2021
).
12.
C. R.
O’Connor
,
J. A.
Boscoboinik
,
M.
Karatok
, and
M. A.
van Spronsen
,
Surf. Sci. Spectra
27
,
014002
(
2020
).
13.
D. I.
Patel
,
D.
Shah
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
014026
(
2019
).
14.
D. I.
Patel
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
014024
(
2019
).
15.
D.
Shah
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
014023
(
2019
).
16.
T. G.
Avval
,
S.
Chatterjee
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
014022
(
2019
).
17.
T. G.
Avval
,
S.
Chatterjee
,
G. T.
Hodges
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
014021
(
2019
).
18.
D. I.
Patel
,
S.
Bahr
,
P.
Dietrich
,
M.
Meyer
,
A.
Thißen
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
024002
(
2019
).
19.
J. J.
Yeh
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
1
(
1985
), see https://vuo.elettra.eu/services/elements/WebElements.html.
20.
S. J.
Kerber
,
J. J.
Bruckner
,
K.
Wozniak
,
S.
Seal
,
S.
Hardcastle
, and
T. L.
Barr
,
J. Vac. Sci. Technol. A
14
,
1314
(
1996
).
21.
N.
Stojilovic
,
J. Chem. Educ.
89
,
1331
(
2012
).
22.
P.
van der Heide
,
X-Ray Photoelectron Spectroscopy: An Introduction to Principles and Practices
(
Wiley
,
Hoboken, NJ
,
2011
).
23.
J.-Q.
Zhong
,
M.
Wang
,
W. H.
Hoffmann
,
M. A.
Van Spronsen
,
D.
Lu
, and
J. A.
Boscoboinik
,
Appl. Phys. Lett.
112
, 091602 (
2018
).
24.
R. S.
Weatherup
,
B.
Eren
,
Y.
Hao
,
H.
Bluhm
, and
M. B.
Salmeron
,
J. Phys. Chem. Lett.
7
,
1622
(
2016
).
25.
D.
Teschner
,
A.
Pestryakov
,
E.
Kleimenov
,
M.
Hävecker
,
H.
Bluhm
,
H.
Sauer
,
A.
Knop-Gericke
, and
R.
Schlögl
,
J. Catal.
230
,
186
(
2005
).
26.
P.
Castillero
,
V.
Rico-Gavira
,
C.
López-Santos
,
A.
Barranco
,
V.
Pérez-Dieste
,
C.
Escudero
,
J. P.
Espinós
, and
A. R.
González-Elipe
,
J. Phys. Chem. C
121
,
15719
(
2017
).
27.
C.
Sánchez-Hanke
,
S. L.
Hulbert
,
D.
Shapiro
, and
R.
Reininger
,
J. Phys. Conf. Ser.
425
,
152017
(
2013
).
28.
M. P.
Seah
,
G. C.
Smith
, and
M. T.
Anthony
,
Surf. Interface Anal.
15
,
293
(
1990
).

Supplementary Material