X-ray photoelectron spectroscopy was used to analyze Si/C/polyethylene glycol powder obtained from Paraclete Energy, Inc. The spectra were obtained using incident monochromatic Al Kα radiation at 1486.6 eV (0.834 01 nm). An initial survey spectrum together with O 1s, C 1s, and Si 2p are presented. A final survey spectrum was collected to ascertain the amount of beam-induced damage, which appears to be minimal. The spectra indicate the principal core level photoelectron and Auger electron signals, with only minor calcium and nitrogen signal, and show the expected silicon-carbon species related to the surface modification process in addition to oxidized carbon and silicon due to atmospheric exposure.

  • Accession#: 01619

  • Technique: XPS

  • Host Material: Si/C/polyethylene glycol powder

  • Instrument: Kratos Axis Ultra

  • Major Elements in Spectra: O, C, and Si

  • Minor Elements in Spectra: Ca and N

  • Published Spectra: 5

  • Spectra in Electronic Record: 5

  • Spectral Category: Comparison

Commercial lithium-ion batteries (LIBs) typically contain graphite as the electrochemically active material in the negative electrode (anode). Silicon is being considered as the intercalation material to partially or fully replace graphite in next-generation, high-energy density, LIBs because the theoretical lithium storage capacity of silicon is about ten times greater than that of graphite. However, the commercialization of silicon-based electrodes has been hindered by the large volume changes (320% increase) that result from the insertion/extraction of lithium-ions into the silicon particles; graphite, in comparison, displays an ∼10% volume change. Additionally, electrochemical alloying/dealloying with lithium fractures the silicon particles and increases their surface area, which, in turn, increases parasitic side-reactions that trap lithium-ions and degrades battery performance.

Various strategies are being pursued to improve the performance and longevity of silicon-containing lithium-ion batteries. Modifying the silicon particle surfaces to increase electronic conductivity and minimize reactivity with the electrolyte ranks high among these approaches. In this study, we report x-ray photoelectron spectroscopy (XPS) data from surface-modified silicon powders obtained from a commercial vendor (Paraclete Energy, Inc.). All silicon particles have an oxide surface layer that forms during material synthesis. Coating these particles with carbon can prevent H2 evolution reactions that occur during water-based electrode fabrication processes. Additional coatings can alter particle interactions with the electrolyte such as wetting and insertion/extraction of Li during charge/discharge cycling. Here, data are presented from Si particles coated with a thin carbonaceous layer (Si/C) and an additional coating based on polyethylene glycol (PEG). The spectra indicate the expected silicon-carbon species related to the surface modification process in addition to oxidized carbon and silicon due to atmospheric exposure.

XPS measurements of the powder and anode samples were made using a Kratos Axis Ultra X-ray photoelectron spectrometer (Kratos Analytical, Inc., Manchester, UK) using monochromatic Al Kα radiation (1486.6 eV). High-resolution spectra were collected from a single spot at an emission angle of 0° at a pass energy of 40 eV from a 0.7 × 0.3 mm2 area using the hybrid (electrostatic and magnetic immersion) lens mode (Ref. 1).

Host Material: Si/C/polyethylene glycol powder

CAS Registry #: Unknown

Host Material Characteristics: Homogeneous; solid; polycrystalline; dielectric; inorganic compound; powder

Chemical Name: Silicon/carbon/polyethylene glycol

Source: Paraclete Energy, Inc.

Host Composition: Silicon + 2.5 wt. % carbon + 4 wt. % polyethylene glycol

Form: Powder

Structure: Silicon has a diamond cubic structure

History and Significance: The surface-modified Si/C/PEG powder was obtained from Paraclete Energy, Inc. The particles were produced by milling and have a mean diameter of ∼150 nm. This material is used in the fabrication of anodes for high-energy silicon-based lithium-ion cells.

As Received Condition: Untreated material as received from the supplier

Analyzed Region: Same as the host material

Ex Situ Preparation/Mounting: Specimen was mounted onto a sample holder with an insulating double-sided office tape (3M 665) (Ref. 2). The sample holder was then loaded onto a grounded sample stage.

In Situ Preparation: None

Charge Control: Low energy flood gun/magnetic immersion lens combination with filament current = 1.8 A, charge balance = 3.5 V, and filament bias = 1 V (Ref. 3).

Temp. During Analysis: 300 K

Pressure During Analysis: <3 × 10−7 Pa

Preanalysis Beam Exposure: First survey 10 s, high-resolution spectra 1279 s, and second survey 10 664 s

Manufacturer and Model: Kratos Axis Ultra

Analyzer Type: Spherical sector

Detector: Channeltron

Number of Detector Elements: 8

Analyzer Mode: Constant pass energy

Throughput (T = EN): N = 0

Excitation Source Window: None

Excitation Source: Al Kα monochromatic

Source Energy: 1486.6 eV

Source Strength: 210 W

Source Beam Size: 2000 × 2000 μm2

Signal Mode: Multichannel direct

Incident Angle: 60°

Source-to-Analyzer Angle: 60°

Emission Angle:

Specimen Azimuthal Angle: N/A

Acceptance Angle from Analyzer Axis:

Analyzer Angular Acceptance Width: 40° × 40°

Manufacturer and Model: Kratos Minibeam I

Energy: 4000 eV

Current: 0.001 mA

Current Measurement Method: Biased stage

Sputtering Species: Ar+

Spot Size (unrastered): 1000 μm

Raster Size: 2000 × 2000 μm2

Incident Angle: 90°

Polar Angle: 45°

Azimuthal Angle: 90°

Comment: Sputtering was performed with a differentially pumped ion gun for the calibration spectra only.

Energy Scale Correction: The binding energy scale of the instrument was calibrated using the Cu 2p (932.6 eV) and Au 4f (84.0 eV) photoelectron lines (Ref. 4). The data for the two survey spectra were referenced to Si 2p = 99 eV (Ref. 3). The data for the high-resolution spectra were referenced to Si 2p = 99.3 eV, as determined by peak fitting [GL(10)].

Recommended Energy Scale Shift: First survey 2 eV, high-resolution spectra 2.7 eV, and second survey 2 eV

Peak Shape and Background Method: Peak shape: See the supplementary material (Ref. 2). Background: A non-iterative Shirley background was used for all remaining regions (Ref. 5).

Quantitation Method: Quantification was done using region definitions for the survey and peak fitting component definitions (Refs. 6 and 7) with casaxps version 2.3.18. Sensitivity factors supplied by Kratos Analytical.

SPECTRAL FEATURES TABLE

Spectrum ID #Element/TransitionPeak Energy
(eV)
Peak Width FWHM
(eV)
Peak Area
(eV × counts/s)a
Sensitivity FactorbConcentration
(at. %)
Peak Assignment
01619-01c O 1s 532 3.47 124 887.0 7.496 20.7 
01619-01c N 1s 399 2.38 2 040.8 4.261 0.6 
01619-01c Ca 2p 348 1.85 1 344.3 15.935 0.1 Ca 
01619-01c C 1s 285 3.60 123 175.0 2.334 65.6 
01619-01c Si 2p 99 3.21 25 934.8 2.492 13.0 Si 
01619-02d O 1s 532.4 1.79 10 522.9 0.744 14.5 —C=O, O—C=O, SiOy 
01619-02d O 1s 533.9 1.36 1 990.2 0.745 2.7 —C—O 
01619-03d C 1s 283.7 1.70 1 020.2 0.237 4.4 SiCx 
01619-03d C 1s 285.3 1.33 10 642.3 0.237 45.8 —CC—, —CH 
01619-03d C 1s 286.7 1.50 2 966.9 0.238 12.8 —C—O 
01619-03d C 1s 289.3 1.09 873.2 0.238 3.8 O—C=O 
01619-04d Si 2p 99.3 1.24 2 680.6 0.260 10.5 Si 
01619-04d Si 2p 100.6 1.65 600.0 0.260 2.4 SiCx, SiOy 
01619-04d Si 2p 102.5 1.90 823.0 0.261 3.2 SiCxOy 
01619-05c O 1s 532 3.40 129 349.0 7.496 17.0 
01619-05c N 1s 398 3.26 3 631.1 4.259 0.8 
01619-05c Ca 2p 347 2.82 1 099.5 15.926 0.1 Ca 
01619-05c C 1s 285 3.48 153 616.0 2.334 64.8 
01619-05c Si 2p 99 3.49 43 939.7 2.492 17.4 Si 
Spectrum ID #Element/TransitionPeak Energy
(eV)
Peak Width FWHM
(eV)
Peak Area
(eV × counts/s)a
Sensitivity FactorbConcentration
(at. %)
Peak Assignment
01619-01c O 1s 532 3.47 124 887.0 7.496 20.7 
01619-01c N 1s 399 2.38 2 040.8 4.261 0.6 
01619-01c Ca 2p 348 1.85 1 344.3 15.935 0.1 Ca 
01619-01c C 1s 285 3.60 123 175.0 2.334 65.6 
01619-01c Si 2p 99 3.21 25 934.8 2.492 13.0 Si 
01619-02d O 1s 532.4 1.79 10 522.9 0.744 14.5 —C=O, O—C=O, SiOy 
01619-02d O 1s 533.9 1.36 1 990.2 0.745 2.7 —C—O 
01619-03d C 1s 283.7 1.70 1 020.2 0.237 4.4 SiCx 
01619-03d C 1s 285.3 1.33 10 642.3 0.237 45.8 —CC—, —CH 
01619-03d C 1s 286.7 1.50 2 966.9 0.238 12.8 —C—O 
01619-03d C 1s 289.3 1.09 873.2 0.238 3.8 O—C=O 
01619-04d Si 2p 99.3 1.24 2 680.6 0.260 10.5 Si 
01619-04d Si 2p 100.6 1.65 600.0 0.260 2.4 SiCx, SiOy 
01619-04d Si 2p 102.5 1.90 823.0 0.261 3.2 SiCxOy 
01619-05c O 1s 532 3.40 129 349.0 7.496 17.0 
01619-05c N 1s 398 3.26 3 631.1 4.259 0.8 
01619-05c Ca 2p 347 2.82 1 099.5 15.926 0.1 Ca 
01619-05c C 1s 285 3.48 153 616.0 2.334 64.8 
01619-05c Si 2p 99 3.49 43 939.7 2.492 17.4 Si 
a

Reported as raw area.

b

Reported as RSF × T × MFP. RSF, relative sensitivity factor; T, transmission, and MFP, mean-free path.

c

Quantification based on region definition.

d

Quantification based on component definition.

ANALYZER CALIBRATION TABLE

Spectrum ID #Element/TransitionPeak Energy
(eV)
Peak Width FWHM
(eV)
Peak Area
(eV × counts/s)
Sensitivity FactorConcentration
(at. %)
Peak Assignment
… Au 4f7/2 84.0 0.95 63 959.3 … … … 
… Cu 2p3/2 932.6 1.25 94 273.9 … … … 
Spectrum ID #Element/TransitionPeak Energy
(eV)
Peak Width FWHM
(eV)
Peak Area
(eV × counts/s)
Sensitivity FactorConcentration
(at. %)
Peak Assignment
… Au 4f7/2 84.0 0.95 63 959.3 … … … 
… Cu 2p3/2 932.6 1.25 94 273.9 … … … 

GUIDE TO FIGURES

Spectrum (Accession) #Spectral RegionVoltage ShiftaMultiplierBaselineComment #
01619-01 Survey –2 b 
01619-02 O 1s –2.7 c 
01619-03 C 1s –2.7 c 
01619-04 Si 2p –2.7 c 
01619-05 Survey –2 d 
Spectrum (Accession) #Spectral RegionVoltage ShiftaMultiplierBaselineComment #
01619-01 Survey –2 b 
01619-02 O 1s –2.7 c 
01619-03 C 1s –2.7 c 
01619-04 Si 2p –2.7 c 
01619-05 Survey –2 d 
a

Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.

b

After 10 s of beam exposure.

c

After 1279 s of beam exposure.

d

After 10 664 s of beam exposure.

Accession #01619-01
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 
Accession #01619-01
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 

Accession #01619-01
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 
Accession #01619-01
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 

Close modal

  • Accession #:01619-02

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

  • Accession #:01619-02

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: O 1s

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

Close modal

  • Accession #:01619-03

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

  • Accession #:01619-03

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: C 1s

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

Close modal

  • Accession #:01619-04

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: Si 2p

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

  • Accession #:01619-04

  • Host Material: Si/C/polyethylene glycol powder

  • Technique: XPS

  • Spectral Region: Si 2p

  • Instrument: Kratos Axis Ultra

  • Excitation Source: Al Kα monochromatic

  • Source Energy: 1486.6 eV

  • Source Strength: 210 W

  • Source Size: 2000 × 2000 mm2

  • Analyzer Type: Spherical sector

  • Incident Angle: 60°

  • Emission Angle: 0°

  • Analyzer Pass Energy: 40 eV

  • Analyzer Resolution: 0.6 eV

  • Total Signal Accumulation Time: 1206 s

  • Total Elapsed Time: 3317 s

  • Number of Scans: 20

  • Effective Detector Width: 8.4 eV

Close modal

Accession #01619-05
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 
Accession #01619-05
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 

Accession #01619-05
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 
Accession #01619-05
Host Material: Si/C/polyethylene glycol powder 
Technique: XPS 
Spectral Region: Survey 
Instrument: Kratos Axis Ultra 
Excitation Source: Al Kα monochromatic 
Source Energy: 1486.6 eV 
Source Strength: 210 W 
Source Size: 2000 × 2000 mm2 
Analyzer Type: Spherical sector analyzer 
Incident Angle: 60° 
Emission Angle: 0° 
Analyzer Pass Energy: 160 eV 
Analyzer Resolution: 2.4 eV 
Total Signal Accumulation Time: 600 s 
Total Elapsed Time: 1200 s 
Number of Scans: 
Effective Detector Width: 33.6 eV 

Close modal

This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. D.P.A. gratefully acknowledges support from the Office of Vehicle Technologies at the U.S. Department of Energy (DOE). This manuscript has been cocreated by UChicago Argonne, LLC, Operator of Argonne National Laboratory. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

1.
R. T.
Haasch
,
S. E.
Trask
,
M. F. T.
Rodrigues
, and
D. P.
Abraham
, “
Si powders and electrodes for high-energy lithium-ion cells
,”
Surf. Sci. Spectra
27
,
016801
(
2020
).
2.
See supplementary material at http://dx.doi.org/10.1116/1.5130766 for XPS spectra of the tape, quantification, and curve-fitting results.
3.
ASTM E1523-15
,
Standard Guide to Charge Control and Charge Referencing Techniques in X-Ray Photoelectron Spectroscopy
(
ASTM International
,
West Conshohocken
,
PA
,
2015
), see https://www.astm.org.
4.
ASTM E2108-16
,
Standard Practice for Calibration of the Electron Binding-Energy Scale of an X-Ray Photoelectron Spectrometer
(
ASTM International
,
West Conshohocken
,
PA
,
2015
), see https://www.astm.org.
5.
D. A.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).
6.
ASTM E995-16
,
Standard Guide for Background Subtraction Techniques in Auger Electron Spectroscopy and X-Ray Photoelectron Spectroscopy
(
ASTM International
,
West Conshohocken
,
PA
,
2016
), see https://www.astm.org.
7.
ISO 19830:2015
,
Surface chemical analysis—Electron Spectroscopies—Minimum Reporting Requirements for Peak Fitting in X-ray Photoelectron Spectroscopy
(
International Organization for Standardization
,
Geneva
,
2015
), see https://www.iso.org.

Supplementary Material