X-ray photoelectron spectroscopy (XPS) was used to analyze an epitaxially grown SrRuO3/SrTiO3(100) single crystal thin film. XP spectra were obtained using incident monochromatic Al Kα radiation at 0.83401 nm. A survey spectrum together with O 1s, Ru 3p, C 1s, Ru 3d, Sr 3p, Sr 3d, Ru 4p, Sr 4s, O 2s, and Sr 4p core-level spectra and the valence band are presented. The spectra indicate the principle core-level photoelectron and Auger electron signals and show only minor carbon contamination. Making use of the O 1s, Ru 3p, and Sr 3d lines and neglecting the components related to surface contaminants, XPS quantitative analysis reveals an altered stoichiometry of the air-exposed crystal surface of SrRu0.92O3.41.
Acccession #: 01412
Technique: XPS
Host Material: Epitaxial SrRuO3/SrTiO3(100)
Instrument: Kratos Axis Ultra
Major Elements in Spectra: Sr, Ru, O
Minor Elements in Spectra: Ni, C
Published Spectra: 6
Spectra in Electronic Record: 6
Spectral Category: Comparison
INTRODUCTION
A growing technological need for high performance thin film metal oxides has driven the exploration of ABO3 perovskite material combinations. Among the materials of particular interest is SrRuO3 (SRO). SRO has become synonymous with a group of perovskite materials referred to as highly correlated metallic oxides. While the optical properties of these materials match closely with similar semiconductors, their electronic properties are more comparable to a metal. SRO is an itinerant ferromagnetic material that has produced unusual physical properties such as the anomalous Hall effect (Ref. 1). It can be grown epitaxially on SrTiO3, with varying degrees of epitaxial strain producing unique structure property relationships (Ref. 2).
A multitude of applications for the use of SRO has been investigated. The material has demonstrated promise for use in all-oxide magnetic tunnel junctions (Ref. 3) and other spin-electronic devices (Ref. 4). As a model material, SRO interfaces with SrTiO3 and other perovskites has been used as a material system for simulating (Refs. 5 and 6) and studying (Ref. 7) two-dimensional electron gases. The ability of SRO to absorb heavily in the visible spectrum has made it a candidate material for heterojunction photocatalysis studies as well (Ref. 8). For a complete review of the properties of SRO, along with other applications including electrode materials, see Ref. 9.
Despite its close epitaxial match with SrTiO3, well controlled synthesis of SrRuO3 has proven to be a difficult challenge in the past for several reasons. The first is that several other stable crystalline materials of the same elements exist, namely, Sr2RuO4 and Sr3RuO7, meaning that deposition rates of the metals and background oxygen content may all require independent control. Bulk single crystals of both Sr2RuO4 and Sr3RuO7 have been produced using the float zone method (Ref. 10), but the same study failed to produce SrRuO3. Epitaxial thin films of SRO have been produced using RF magnetron sputtering at elevated temperature in an argon oxygen mixture (Ref. 11); the authors of this study did not say whether the sputtering was done from a single strontium-ruthenium oxide ceramic target or cosputtered from independent Sr and Ru targets. SRO epitaxial thin films have also been produced by pulsed-laser deposition (PLD) at elevated temperature in oxygen (Ref. 12).
SPECIMEN DESCRIPTION (ACCESSION # 01412)
Host Material: Epitaxial SrRuO3/SrTiO3(100)
CAS Registry #: 60862-59-1
Host Material Characteristics: Homogeneous; solid; single crystal; conductor; inorganic compound
Chemical Name: Strontium ruthenate
Source: The sample was grown at Brookhaven National Laboratory by PLD.
Host Composition: SrRuO3
Form: Epitaxial thin film
Structure: Orthorhombic, perovskite structure
History and Significance: The sample was grown at Brookhaven National Laboratory by PLD using a PVD Products PLD/MBE 2300 with a 248 nm KrF excimer laser. Deposition occurred from a single strontium-ruthenium oxide ceramic target at 750 °C in 200 mTorr of oxygen. The substrate was a single side polished SrTiO3 (100) single crystal (MTI corporation). Cross-section transmission electron microscopy and selected area electron diffraction were performed on SrRuO3 layers at Brookhaven National Laboratory to confirm epitaxy, similar to Ref. 13.
As Received Condition: Epitaxial thin film deposited onto SrTiO3 (100) single crystal
Analyzed Region: Same as host material
Ex Situ Preparation/Mounting: Sample was mounted onto holder with a copper clip.
In Situ Preparation: None
Charge Control: None
Temp. During Analysis: 300 K
Pressure During Analysis: <3 × 10−7 Pa
Preanalysis Beam Exposure: 0 s
INSTRUMENT DESCRIPTION
Manufacturer and Model: Kratos Axis Ultra
Analyzer Type: Spherical sector
Detector: Channeltron
Number of Detector Elements: 8
INSTRUMENT PARAMETERS COMMON TO ALL SPECTRA
Spectrometer
Analyzer Mode: Constant pass energy
Throughput (T = EN): N = 0
Excitation Source Window: Not specified
Excitation Source: Al Ka monochromatic
Source Energy: 1486.6 eV
Source Strength: 210 W
Source Beam Size: 2000 × 2000 μm
Signal Mode: Multichannel direct
Geometry
Incident Angle: 54°
Source to Analyzer Angle: 54°
Emission Angle: 0°
Specimen Azimuthal Angle: 45°
Acceptance Angle from Analyzer Axis: 0°
Analyzer Angular Acceptance Width: 40° × 40°
Ion gun
Manufacturer and Model: Kratos Minibeam I
Energy: 4000 eV
Current: 0.001 mA
Current Measurement Method: Biased stage
Sputtering Species: Ar+
Spot Size (unrastered): 1000 μm
Raster Size: 2000 × 2000 μm
Incident Angle: 90°
Polar Angle: 45°
Azimuthal Angle: 90°
Comment: Sputtering was performed with a differentially pumped ion gun for the calibration spectra only.
Data analysis method
Energy Scale Correction: The binding energy was referenced to the Au 4f7/2 at 84.0 eV.
Recommended Energy Scale Shift: −0.77 eV
Peak Shape and Background Method: Peak shape: O 1s, C 1s, Ru 4p, Sr 4s, O 2p, Sr 4p Gaussian–Lorentzian product formula GL(30) (Ref. 14); Ru 3p and Ru 3d Gaussian-Lorentzian product formula modified by an asymmetric formula (Ref. 15) A(0.33,0.5,0)SGL(30); Sr 3p A(0.3,0.6,0)SGL(30); Sr 3d A(0.33,0.43,0)SGL(30); Background: Custom three parameter Tougaard background (Ref. 16), U 4 Tougaard (B, C, D, T0 = 0) (Ref. 13) was used. O 1s: B = 325 eV2, C = 320 eV2, D = 560 eV2. Ru 3p: B = 420 eV2, C = 320 eV2, D = 560 eV2. C 1s: B = 375 eV2, C = 320 eV2, D = 560 eV2. Sr 3d: B = 255 eV2, C = 350 eV2, D = 380 eV2. Sr 4p/Ru 4s: B = 135 eV2, C = 90 eV2, D = 260 eV2. Valence band B = 90 eV2, C = 90 eV2, D = 260 eV2.
Quantitation Method: Quantification was done using component definitions with casaxps version 2.3.15. Sensitivity factors supplied by Kratos Analytical.
Spectrum ID # . | Element/Transition . | Peak Energy (eV) . | Peak Width FWHM (eV) . | Peak Area (eV counts/s) . | Sensitivity Factor . | Concentration (at. %) . | Peak Assignment . |
---|---|---|---|---|---|---|---|
01412-02 | O 1s | 528.8 | 0.93 | 2523.97 | 0.780 | 15.30 | SrRuO3 |
01412-02 | O 1s | 529.8 | 1.60 | 1818.00 | 0.780 | 11.02 | SrO, RuO2 |
01412-02 | O 1s | 531.1 | 1.60 | 1858.43 | 0.780 | 11.26 | Hydroxide |
01412-02 | O 1s | 532.3 | 1.42 | 1446.81 | 0.780 | 8.75 | Carbonate |
01412-02 | O 1s | 533.6 | 1.87 | 462.72 | 0.780 | 2.80 | Water |
01412-03 | Ru 3p3/2 | 463.6 | 4.01 | 3682.00 | 2.043 | 8.89 | SrRuO3 |
01412-03 | Ru 3p1/2 | 485.9 | 4.01 | 1841.00 | 2.043 | 4.38 | SrRuO3 |
01412-04a | Sr 3p3/2 | 267.8 | 2.05 | … | … | … | … |
01412-04a | Sr 3p1/2 | 278.2 | 2.05 | … | … | … | … |
01412-04a | Ru 3d5/2 | 281.2 | 1.14 | … | … | … | … |
01412-04a | Ru 3d5/2 | 285.4 | 1.14 | … | … | … | … |
01412-04a | Ru 3d3/2 | 282.6 | 1.70 | … | … | … | … |
01412-04a | Ru 3d3/2 | 286.8 | 1.70 | … | … | … | … |
01412-04 | C 1s | 285.0 | 1.60 | 1949.14 | 0.278 | 6.86 | Hydrocarbon |
01412-04 | C 1s | 287.9 | 1.70 | 500.92 | 0.278 | 9.47 | Carbonyl |
01412-04 | C 1s | 289.4 | 1.70 | 362.73 | 0.278 | 6.86 | Carbonate |
01412-05 | Sr 3d5/2 | 132.0 | 0.72 | 2140.23 | 1.843 | 6.52 | SrRuO3 |
01412-05 | Sr 3d5/2 | 133.8 | 0.72 | 1433.95 | 1.843 | 4.36 | SrO, carbonate |
01412-05 | Sr 3d3/2 | 133.5 | 1.45 | 690.78 | 1.843 | 2.11 | SrRuO3 |
01412-05 | Sr 3d3/2 | 135.3 | 1.45 | 462.82 | 1.843 | 1.41 | Carbonate |
01412-06 | Ru 4p | 45.0 | 4.71 | 593.33 | … | … | … |
01412-06 | Ru 4p | 48.5 | 4.71 | 297.66 | … | … | … |
01412-06 | Sr 4s | 36.5 | 1.41 | 164.18 | … | … | … |
01412-06 | Sr 4s | 37.9 | 2.00 | 95.44 | … | … | … |
01412-06a | O 2s | 20.9 | 2.27 | … | … | … | … |
01412-06a | O 2s | 23.2 | 3.42 | … | … | … | … |
01412-06a | Sr 4p3/2 | 17.8 | 1.00 | … | … | … | … |
01412-06a | Sr 4p3/2 | 19.0 | 1.40 | … | … | … | … |
01412-06a | Sr 4p1/2 | 18.9 | 1.00 | … | … | … | … |
01412-06a | Sr 4p1/2 | 20.1 | 1.40 | … | … | … | … |
01412-06 | Ru 4d (t2g) | 0.3 | 0.59 | … | … | … | … |
01412-06b | Fermi level | 0.0 | … | … | … | … | … |
Spectrum ID # . | Element/Transition . | Peak Energy (eV) . | Peak Width FWHM (eV) . | Peak Area (eV counts/s) . | Sensitivity Factor . | Concentration (at. %) . | Peak Assignment . |
---|---|---|---|---|---|---|---|
01412-02 | O 1s | 528.8 | 0.93 | 2523.97 | 0.780 | 15.30 | SrRuO3 |
01412-02 | O 1s | 529.8 | 1.60 | 1818.00 | 0.780 | 11.02 | SrO, RuO2 |
01412-02 | O 1s | 531.1 | 1.60 | 1858.43 | 0.780 | 11.26 | Hydroxide |
01412-02 | O 1s | 532.3 | 1.42 | 1446.81 | 0.780 | 8.75 | Carbonate |
01412-02 | O 1s | 533.6 | 1.87 | 462.72 | 0.780 | 2.80 | Water |
01412-03 | Ru 3p3/2 | 463.6 | 4.01 | 3682.00 | 2.043 | 8.89 | SrRuO3 |
01412-03 | Ru 3p1/2 | 485.9 | 4.01 | 1841.00 | 2.043 | 4.38 | SrRuO3 |
01412-04a | Sr 3p3/2 | 267.8 | 2.05 | … | … | … | … |
01412-04a | Sr 3p1/2 | 278.2 | 2.05 | … | … | … | … |
01412-04a | Ru 3d5/2 | 281.2 | 1.14 | … | … | … | … |
01412-04a | Ru 3d5/2 | 285.4 | 1.14 | … | … | … | … |
01412-04a | Ru 3d3/2 | 282.6 | 1.70 | … | … | … | … |
01412-04a | Ru 3d3/2 | 286.8 | 1.70 | … | … | … | … |
01412-04 | C 1s | 285.0 | 1.60 | 1949.14 | 0.278 | 6.86 | Hydrocarbon |
01412-04 | C 1s | 287.9 | 1.70 | 500.92 | 0.278 | 9.47 | Carbonyl |
01412-04 | C 1s | 289.4 | 1.70 | 362.73 | 0.278 | 6.86 | Carbonate |
01412-05 | Sr 3d5/2 | 132.0 | 0.72 | 2140.23 | 1.843 | 6.52 | SrRuO3 |
01412-05 | Sr 3d5/2 | 133.8 | 0.72 | 1433.95 | 1.843 | 4.36 | SrO, carbonate |
01412-05 | Sr 3d3/2 | 133.5 | 1.45 | 690.78 | 1.843 | 2.11 | SrRuO3 |
01412-05 | Sr 3d3/2 | 135.3 | 1.45 | 462.82 | 1.843 | 1.41 | Carbonate |
01412-06 | Ru 4p | 45.0 | 4.71 | 593.33 | … | … | … |
01412-06 | Ru 4p | 48.5 | 4.71 | 297.66 | … | … | … |
01412-06 | Sr 4s | 36.5 | 1.41 | 164.18 | … | … | … |
01412-06 | Sr 4s | 37.9 | 2.00 | 95.44 | … | … | … |
01412-06a | O 2s | 20.9 | 2.27 | … | … | … | … |
01412-06a | O 2s | 23.2 | 3.42 | … | … | … | … |
01412-06a | Sr 4p3/2 | 17.8 | 1.00 | … | … | … | … |
01412-06a | Sr 4p3/2 | 19.0 | 1.40 | … | … | … | … |
01412-06a | Sr 4p1/2 | 18.9 | 1.00 | … | … | … | … |
01412-06a | Sr 4p1/2 | 20.1 | 1.40 | … | … | … | … |
01412-06 | Ru 4d (t2g) | 0.3 | 0.59 | … | … | … | … |
01412-06b | Fermi level | 0.0 | … | … | … | … | … |
A significant peak overlap makes an estimate of peak area difficult.
The position of the Fermi level was estimated by subtracting half of the full width at half maximum (FWHM) of Ru 4d (t2g) from the position of the maximum intensity of Ru 4d (t2g).
Spectrum ID # . | Element/Transition . | Peak Energy (eV) . | Peak Width FWHM (eV) . | Peak Area (eV counts/s) . | Sensitivity Factor . | Concentration (at. %) . | Peak Assignment . |
---|---|---|---|---|---|---|---|
8 | Au 4f7/2 | 84.0 | 0.72 | 151917.9 | … | … | … |
10 | Ag 3d5/2 | 368.2 | 0.58 | 230506.2 | … | … | … |
12 | Cu 2p3/2 | 932.6 | 0.88 | 410979.8 | … | … | … |
Spectrum ID # . | Element/Transition . | Peak Energy (eV) . | Peak Width FWHM (eV) . | Peak Area (eV counts/s) . | Sensitivity Factor . | Concentration (at. %) . | Peak Assignment . |
---|---|---|---|---|---|---|---|
8 | Au 4f7/2 | 84.0 | 0.72 | 151917.9 | … | … | … |
10 | Ag 3d5/2 | 368.2 | 0.58 | 230506.2 | … | … | … |
12 | Cu 2p3/2 | 932.6 | 0.88 | 410979.8 | … | … | … |
Spectrum (Accession) # . | Spectral Region . | Voltage Shifta . | Multiplier . | Baseline . | Comment # . |
---|---|---|---|---|---|
01412-01 | survey | … | 1 | 0 | … |
01412-02 | O 1s | 0.77 | 1 | 0 | … |
01412-03 | Ru 3p | 0.77 | 1 | 0 | … |
01412-04 | Ru 3d, C 1s, Sr 3p | 0.77 | 1 | 0 | … |
01412-05 | Sr 3d | 0.77 | 1 | 0 | … |
01412-06 | Ru 4p, Sr 4s, O 2s, Sr 4p, O 2p, Ru 4d | 0.77 | 1 | 0 | … |
Spectrum (Accession) # . | Spectral Region . | Voltage Shifta . | Multiplier . | Baseline . | Comment # . |
---|---|---|---|---|---|
01412-01 | survey | … | 1 | 0 | … |
01412-02 | O 1s | 0.77 | 1 | 0 | … |
01412-03 | Ru 3p | 0.77 | 1 | 0 | … |
01412-04 | Ru 3d, C 1s, Sr 3p | 0.77 | 1 | 0 | … |
01412-05 | Sr 3d | 0.77 | 1 | 0 | … |
01412-06 | Ru 4p, Sr 4s, O 2s, Sr 4p, O 2p, Ru 4d | 0.77 | 1 | 0 | … |
Voltage shift of the archived (as-measured) spectrum relative to the printed figure. The figure reflects the recommended energy scale correction due to a calibration correction, sample charging, flood gun, or other phenomenon.
ACKNOWLEDGMENTS
This research used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No. DE-SC0012704. This work was carried out in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. D.E.B. acknowledges support from NSF (DMR 13-06822).