Thin films of cobalt (about 20 nm) were deposited on a silicon 100 substrate. The deposition was carried out using the e-beam technique. The films were oxidized under two different conditions: in vacuum and in a quartz tube furnace. The elemental cobalt and the two oxidized samples were characterized by the technique of x-ray photoelectron spectroscopy. Magnesium Kα radiation (1253.6 eV) was used as the source of the x-ray excitation. The spectral data in the cobalt 2p, 2s, 3s, 3p, Auger LMM regions, oxygen 1s region, and carbon 1s regions were recorded under a high resolution mode. The sample oxidized in vacuum showed features distinct from that oxidized in the quartz tube furnace. The data will serve as a comparison for the cobalt oxides formed under different processing conditions.

1.
X.
Chen
,
H.
van Gog
, and
M. A.
van Huis
,
J. Mater. Chem. C
9
,
5662
(
2021
).
2.
F.-C.
Kong
,
Y.-F.
Li
,
C.
Shang
, and
Z.-P.
Liu
,
J. Phys. Chem. C
123
,
17539
(
2019
).
3.
N.
Bahlawane
,
P. H. T.
Ngamou
,
V.
Vannier
,
T.
Kottke
,
J.
Heberle
, and
K.
Kohse-Höinghaus
,
Phys. Chem. Chem. Phys.
11
,
9224
(
2009
).
4.
S.
Mehl
,
P.
Ferstl
,
M.
Schuler
,
A.
Toghan
,
O.
Brummel
,
L.
Hammer
,
M. A.
Schneider
, and
J.
Libuda
,
Phys. Chem. Chem. Phys.
17
,
23538
(
2015
).
5.
V.
Uvarov
,
J.
Krutel
,
K.
Mosek
,
J.
Myslivecek
, and
V.
Johanek
,
App. Surf. Sci.
593
,
153430
(
2022
).
6.
Y.
Chen
,
J.
Zhu
,
N.
Wang
,
H.
Cheng
,
X.
Tang
,
S.
Komarneni
, and
W.
Hu
,
J. Mater. Chem. A
9
,
7005
(
2021
).
7.
R.
Madhu
,
V.
Veeramani
,
S.
Chen
,
A.
Manikandan
,
A.
Lo
, and
Y.
Chueh
,
ACS Appl. Mater. Interfaces
7
,
15812
(
2015
).
8.
U.
Kumar
,
A.
Shete
,
A. S.
Harle
,
O.
Kasyutich
,
W.
Schwarzacher
,
A.
Pundle
, and
P.
Poddar
,
Chem. Mater.
20
,
1484
(
2008
).
9.
M. J.
Benitez
,
O.
Petracic
,
E. L.
Salabas
,
F.
Radu
,
H.
Tuysuz
,
F.
Schuth
, and
H.
Zabel
,
Phys. Rev. Lett.
101
,
7026
(
2008
).
10.
Z.
Dong
,
Y. Y.
Xu
,
X. J.
Zhang
,
W. T.
Jin
,
P.
Kashkarov
, and
H.
Zhang
,
Solid State Commun.
149
,
64
(
2009
).
11.
C. Y.
Ma
,
Z.
Mu
,
J. J.
Li
,
Y. G.
Jin
,
J.
Cheng
,
G. Q.
Lu
,
Z. P.
Hao
, and
S. Z.
Qiao
,
J. Am. Chem. Soc.
132
,
2608
(
2010
).
12.
B.
Varghese
,
Y. S.
Zhang
,
L.
Dai
,
V. B. C.
Tan
,
C. T.
Lim
, and
C. H.
Sow
,
Nano Lett.
8
,
3226
(
2008
).
13.
L. H.
Zhuo
,
J. C.
Ge
,
L. H.
Cao
, and
B.
Tang
,
Cryst. Growth Des.
9
,
1
(
2009
).
14.
J.
Hu
,
M.
Chen
,
X.
Fang
, and
L.
Wu
,
Chem. Soc. Rev.
40
,
5472
(
2011
).
15.
Z.
Wang
,
L.
Zhou
, and
X. W.
Lou
,
Adv. Mater.
24
,
1903
(
2012
).
16.
J.
Liu
and
D.
Xue
,
Nanoscale Res. Lett.
5
,
1525
(
2010
).
17.
X.
Lai
,
J. E.
Halpert
, and
D.
Wang
,
Energy Environ. Sci.
5
,
5604
(
2012
).
18.
C.
Yao
,
M.
Ismail
,
A.
Hao
,
S. K.
Thatikonda
,
W.
Huang
,
N.
Qin
, and
D.
Bao
,
RSC Adv.
9
,
12615
(
2019
).
19.
Y.
Li
,
L.
Zhang
,
J.
Peng
,
W.
Zhang
, and
K.
Peng
,
J. Power Sources
433
,
226704
(
2019
).
20.
C. R.
Dhas
,
R.
Venkatesh
,
R.
Sivakumar
,
A. M. E.
Raj
, and
C.
Sanjeeviraja
,
Opt. Mater.
72
,
717
(
2017
).
21.
A. A.
Yadav
and
U. J.
Chavan
,
Electrochim. Acta
232
,
370
(
2017
).
22.
Y. G.
Li
,
B.
Tan
, and
Y. Y.
Wu
,
Nano Lett.
8
,
265
(
2008
).
23.
L.
Tian
,
H. L.
Zou
,
J. X.
Fu
,
X. F.
Yang
,
Y.
Wang
,
H. L.
Guo
, and
M. M.
Wu
,
Adv. Funct. Mater.
20
, 617 (
2010
).
24.
R.
Hossain
and
V.
Sahajwalla
,
J. Environ. Chem. Eng.
10
,
107858
(
2022
).
25.
X. T.
Zhang
,
X. Z.
Chen
,
G.
Luo
,
L.
Li
,
Y.
Li
,
J. N.
Hu
, and
B. J.
Zhang
,
Mater. Lett.
309
,
131427
(
2022
).
26.
M.
Kiani
,
N.
Rabiee
,
M.
Bagherzadeh
,
A. M.
Ghadiri
,
Y.
Fatahi
,
R.
Dinarvandb
, and
T. J.
Webster
,
Nanomed.: Nanotechnol. Biol. Med.
32
,
102331
(
2022
).
27.
X.
Huang
,
H.
Cai
,
H.
Zhou
,
T.
Li
,
H.
Jin
,
C. E.
Evans
,
J.
Cai
, and
J.
Pi
,
Acta Biomater.
121
,
605
(
2021
).
28.
C. M.
Chuang
,
C. W.
Huang
,
H. S.
Teng
, and
J. M.
Ting
,
Compos. Sci. Technol.
72
,
1524
(
2012
).
29.
P. S.
Gaikar
,
S. T.
Navale
,
V. V.
Jadhav
,
Mu
Naushad
,
F. J.
Stadler
,
R. S.
Mane
, and
P. R.
Arjunwadkar
,
Electrochim. Acta
253
,
151
(
2017
).
30.
S.
Chen
,
J.
Zhu
, and
X. J.
Wang
,
J. Phys. Chem. C
114
,
11829
(
2010
).
31.
M. M.
Rahman
,
J. Z.
Wang
,
X. L.
Deng
,
Y.
Li
, and
H.-K.
Liu
,
Electrochim. Acta
55
,
504
(
2009
).
32.
P. S.
Gaikar
,
A. P.
Angre
,
G.
Wadhawa
,
P. V.
Ledade
,
S. H.
Mahmood
, and
T. L.
Lambat
,
Curr. Res. Green Sustainable Chem.
5
,
100265
(
2022
).
33.
M.
Martínez-Gil
,
D.
Cabrera-German
,
M. I.
Pintor-Monroy
,
J. A.
García-Valenzuela
,
M.
Cota-Leal
,
W.
de la Cruz
,
M. A.
Quevedo-Lopez
,
R.
Pérez-Salas
, and
M.
Sotelo-Lerma
,
Mater. Sci. Semicond. Process.
107
,
104825
(
2020
).
34.
S.
Vijayakumar
,
A. K.
Ponnalagi
,
S.
Nagamuthu
, and
G.
Muralidharan
,
Electrochim. Acta
106
,
500
(
2013
).
35.
G.
Asha
,
V.
Rajeshwari
,
G.
Stephen
,
S.
Gurusamy v
,
D.
Carolin
, and
J.
Rachel
,
Mater. Today: Proc.
48
,
486
(
2022
).
36.
V. R.
Shinde
,
S. B.
Mahadik
,
T. P.
Gujar
, and
C. D.
Lokhande
,
Appl. Surf. Sci.
252
,
7487
(
2006
).
37.
A. L.
Costa Silva
,
A.
De Giovanni Rodrigues
,
R.
Goulart
,
M.
Jasinevicius
, and
P. F.
de Godoy
,
Appl. Surf. Sci.
606
,
154943
(
2022
).

Supplementary Material

You do not currently have access to this content.