Composite materials based on MnO2 deposits functionalized with graphitic carbon nitride (gCN) nanostructures are promising (photo)electrocatalysts for oxygen evolution reaction (OER). Besides the individual properties of the two electrode components, mutual interactions at their interface can also exert a significant influence on functional performances. In this work, MnO2 deposits are synthesized by plasma enhanced-chemical vapor deposition on Ni foam supports and subsequently decorated with two different forms of carbon nitride via electrophoretic deposition. Structural and morphological analyses revealed the formation of β-MnO2 2D structures hierarchically assembled into flowerlike architectures, whose surface appeared decorated by 3D particles built up from gCN nanoflakes. Based on the intimate contact between the two semiconductors, an effective electronic and chemical coupling was established at their interface. In the following, we report on a comparative XPS characterization of a bare MnO2 electrode material and of two MnO2-gCN composite systems prepared from different carbon nitride powders. Survey spectra as well as detailed scans for C 1s, N 1s, O 1s, and Mn 2p regions are presented and critically discussed.

1.
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
N.
Gauquelin
,
A.
Orekhov
,
J.
Verbeeck
,
C.
Maccato
, and
D.
Barreca
,
Appl. Surf. Sci.
618
,
156652
(
2023
).
2.
L.
Bigiani
et al,
Appl. Catal. B: Environ.
284
,
119684
(
2021
).
3.
X.
Chang
,
X.
Zhai
,
S.
Sun
,
D.
Gu
,
L.
Dong
,
Y.
Yin
, and
Y.
Zhu
,
Nanotechnology
28
,
135705
(
2017
).
4.
L.
Lin
,
H.
Ou
,
Y.
Zhang
, and
X.
Wang
,
ACS Catal.
6
,
3921
(
2016
).
5.
Y.
Zhao
,
J.
Zhang
,
W.
Wu
,
X.
Guo
,
P.
Xiong
,
H.
Liu
, and
G.
Wang
,
Nano Energy
54
,
129
(
2018
).
6.
M.
Benedet
,
G. A.
Rizzi
,
A.
Gasparotto
,
O. I.
Lebedev
,
L.
Girardi
,
C.
Maccato
, and
D.
Barreca
,
Chem. Eng. J.
448
,
137645
(
2022
).
7.
J.
Huang
,
Y.
Lu
,
H.
Zhang
,
L.
Shangguan
,
Z.
Mou
,
J.
Sun
,
S.
Sun
,
J.
He
, and
W.
Lei
,
Chem. Eng. J.
405
,
126685
(
2021
).
9.
W.
Liu
,
Z.
Zhang
,
D.
Zhang
,
R.
Wang
,
Z.
Zhang
, and
S.
Qiu
,
RSC Adv.
10
,
28848
(
2020
).
10.
Z.
Mo
et al,
Appl. Catal. B: Environ.
241
,
452
(
2019
).
11.
L.
Bigiani
,
A.
Gasparotto
,
C.
Maccato
,
C.
Sada
,
J.
Verbeeck
,
T.
Andreu
,
J. R.
Morante
, and
D.
Barreca
,
ChemCatChem
12
,
5984
(
2020
).
12.
T. S.
Miller
,
A. B.
Jorge
,
T. M.
Suter
,
A.
Sella
,
F.
Corà
, and
P. F.
McMillan
,
Phys. Chem. Chem. Phys.
19
,
15613
(
2017
).
13.
Q.
Liang
,
Z.
Li
,
Z.-H.
Huang
,
F.
Kang
, and
Q.-H.
Yang
,
Adv. Funct. Mater.
25
,
6885
(
2015
).
14.
S.
He
,
K.
Xiao
,
X.-Z.
Chen
,
T.
Li
,
T.
Ouyang
,
Z.
Wang
,
M.-L.
Guo
, and
Z.-Q.
Liu
,
J. Colloid Interface Sci.
557
,
644
(
2019
).
15.
X.
Li
,
G.
Fang
,
X.
Qian
, and
Q.
Tian
,
Chem. Eng. J.
428
,
131052
(
2022
).
16.
F.
Dong
,
Z.
Wang
,
Y.
Li
,
W.-K.
Ho
, and
S. C.
Lee
,
Environ. Sci. Technol.
48
,
10345
(
2014
).
17.
L.
Bigiani
et al,
J. Mater. Chem. A
8
,
16902
(
2020
).
18.
B. P.
Mishra
,
L.
Acharya
,
S.
Subudhi
, and
K.
Parida
,
Int. J. Hydrogen Energy
47
,
32107
(
2022
).
19.
Y.-S.
Jun
,
E. Z.
Lee
,
X.
Wang
,
W. H.
Hong
,
G. D.
Stucky
, and
A.
Thomas
,
Adv. Funct. Mater.
23
,
3661
(
2013
).
20.
S.
Zhang
,
J.
Yan
,
S.
Yang
,
Y.
Xu
,
X.
Cai
,
X.
Li
,
X.
Zhang
,
F.
Peng
, and
Y.
Fang
,
Chin. J. Catal.
38
,
365
(
2017
).
21.
22.
Y.
Xiao
,
G.
Tian
,
W.
Li
,
Y.
Xie
,
B.
Jiang
,
C.
Tian
,
D.
Zhao
, and
H.
Fu
,
J. Am. Chem. Soc.
141
,
2508
(
2019
).
23.
F.
Cheng
,
T.
Zhang
,
Y.
Zhang
,
J.
Du
,
X.
Han
, and
J.
Chen
,
Angew. Chem. Int. Ed.
52
,
2474
(
2013
).
24.
Pattern N° 024-0735
, JCPDS (
2000
).
25.
H.
Soltani
,
H.
Bahiraei
, and
S.
Ghasemi
,
J. Alloys Compd.
904
,
163565
(
2022
).
26.
C.
Maccato
et al,
Chem. Eur. J.
23
,
17954
(
2017
).
27.
28.
L.
Bigiani
,
C.
Maccato
,
D.
Barreca
, and
A.
Gasparotto
,
Surf. Sci. Spectra
27
,
024005
(
2020
).
29.
F.
Gri
,
L.
Bigiani
,
A.
Gasparotto
,
C.
Maccato
, and
D.
Barreca
,
Surf. Sci. Spectra
25
,
024004
(
2018
).
30.
X.
Pan
,
F.
Kong
, and
M.
Xing
,
Res. Chem. Intermed.
48
,
2837
(
2022
).
31.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin Elmer Corporation
,
Eden Prairie
,
MN
,
1992
).
33.
Y.
Zhang
,
H.
Li
,
L.
Zhang
,
R.
Gao
, and
W.-L.
Dai
,
ACS Sustain. Chem. Eng.
7
,
17008
(
2019
).
35.
Z.
Gu
,
Y.
Asakura
, and
S.
Yin
,
Nanotechnology
31
,
114001
(
2020
).
36.
P.
Xia
,
B.
Zhu
,
B.
Cheng
,
J.
Yu
, and
J.
Xu
,
ACS Sustain. Chem. Eng.
6
,
965
(
2018
).
37.
Y.
Shi
,
M.
Zhang
,
Y.
Li
,
G.
Liu
,
R.
Jin
,
Q.
Wang
,
H.
Xu
, and
S.
Gao
,
Ceram. Int.
46
,
25905
(
2020
).
38.
M.
Wang
,
M.
Shen
,
L.
Zhang
,
J.
Tian
,
X.
Jin
,
Y.
Zhou
, and
J.
Shi
,
Carbon
120
,
23
(
2017
).
39.
X.
Guo
,
J.
Duan
,
W.
Wang
, and
Z.
Zhang
,
Fuel
280
,
118544
(
2020
).
40.
J.
Wang
and
W.-D.
Zhang
,
Electrochim. Acta
71
,
10
(
2012
).
41.
D. J.
Morgan
,
Surf. Sci. Spectra
28
,
014007
(
2021
).
42.
D.
Barreca
,
A.
Gasparotto
,
C.
Maccato
,
C.
Maragno
, and
E.
Tondello
,
Surf. Sci. Spectra
14
,
19
(
2007
).
43.
C.
Maccato
,
L.
Bigiani
,
M.
Klotzsche
,
D.
Barreca
, and
A.
Gasparotto
,
Surf. Sci. Spectra
28
,
024002
(
2021
).
44.
L.
Bigiani
,
D.
Barreca
,
A.
Gasparotto
, and
C.
Maccato
,
Surf. Sci. Spectra
25
,
014003
(
2018
).
45.
T.
Wagner
,
D.
Valbusa
,
L.
Bigiani
,
D.
Barreca
,
A.
Gasparotto
, and
C.
Maccato
,
Surf. Sci. Spectra
27
,
024004
(
2020
).
46.
D.
Bekermann
,
A.
Gasparotto
,
D.
Barreca
,
A.
Devi
, and
R. A.
Fischer
,
Surf. Sci. Spectra
18
,
36
(
2011
).
47.
Y.
Shi
,
S.
Gao
,
Y.
Yuan
,
G.
Liu
,
R.
Jin
,
Q.
Wang
,
H.
Xu
, and
J.
Lu
,
Nano Energy
77
,
105153
(
2020
).
48.
Q.
Zhang
,
Y.
Peng
,
F.
Deng
,
M.
Wang
, and
D.
Chen
,
Sep. Purif. Technol.
246
,
116890
(
2020
).
49.
D.
Liu
,
Z.
Zhang
, and
J.
Wu
,
Energy Fuels
33
,
3089
(
2019
).
50.
F.
Mattelaer
,
T.
Bosserez
,
J.
Ronge
,
J. A.
Martens
,
J.
Dendooven
, and
C.
Detavernier
,
RSC Adv.
6
,
98337
(
2016
).
51.
G.
Peng
,
L.
Xing
,
J.
Barrio
,
M.
Volokh
, and
M.
Shalom
,
Angew. Chem. Int. Ed.
57
,
1186
(
2018
).

Supplementary Material

You do not currently have access to this content.