The powder of CaF2 has been proposed as a practical reference for the quantitation of Ca and F in low energy ion scattering (LEIS) analysis. It is chemically inert, easy to clean, and inexpensive. LEIS is extremely surface sensitive. Thus, in contrast to surface analytic techniques such as x-ray photoelectron spectroscopy and secondary ion mass spectroscopy, the surface termination of a sample is clearly reflected in the LEIS results. It is, thus, unlikely that in LEIS, the F/Ca ratio for CaF2 is 2.0. This paper supports the reliability of the CaF2 powder reference by evaluating the calcium and fluorine atomic surface concentrations, roughness factor and shows that the surface termination of the powder is the same as that of CaF2(111). The CaF2 samples are treated by annealing at 725 K and measured at 625 K. The presented spectra are practically free of contamination. Ion scattering by LiF (001), an evaporated Ca layer, and a Cu foil are used as basic references for Ca and F. The atomic sensitivity factors and the relative sensitivity factors have been determined for F, Ca, and Cu (3 keV He+, 145°). The F/Ca atomic ratio is found to be the same (2.3 ± 0.1) for CaF2(111) and its powder. For the powder, the Ca and F signals are reduced by a factor of 0.77 ± 0.03 in comparison with those for the single crystal.

1.
H. H.
Brongersma
, “
Low-energy ion scattering
,” in
Characterization of Materials
, edited by
E. N.
Kaufmann
(
Wiley
,
New York
,
2012
), pp.
2024
2044
.
2.
C. V.
Cushman
,
P.
Bruener
,
J.
Zakel
,
G. H.
Major
,
B. M.
Lunt
,
N. J.
Smith
,
T.
Grehl
, and
M. R.
Linford
,
Anal. Methods
8
,
3419
(
2016
).
3.
C. R.
Stilhano Vilas Boas
,
A. A.
Zameshin
,
J. M.
Sturm
, and
F.
Bijkerk
,
Surf. Sci.
700
,
121680
(
2020
).
4.
M.
Sasaki
,
P. J.
Scanlon
,
S.
Ermolov
, and
H. H.
Brongersma
,
Nucl. Instrum. Methods Phys. Res.
B190
,
127
(
2002
).
5.
R.
Cortenraad
,
A. W.
Denier van der Gon
,
H. H.
Brongersma
,
S. N.
Ermolov
, and
V. G.
Glebovsky
,
Surf. Interf. Anal.
31
,
200
(
2001
).
6.
T. G.
Avval
,
C. V.
Cushman
,
P.
Brüner
,
T.
Grehl
,
H. H.
Brongersma
, and
M. R.
Linford
,
Surf. Sci. Spectra
26
,
024201
(
2019
).
7.
IONTOF GmbH, Münster, Germany.
8.
H. H.
Brongersma
and
T. M.
Buck
,
Surf. Sci.
53
,
649
(
1975
).
9.
R.
Souda
and
M.
Aono
,
Nucl. Instrum. Methods Phys. Res. B
15
,
114
(
1986
).
10.
H. H.
Brongersma
,
M.
Draxler
,
M.
de Ridder
, and
P.
Bauer
,
Surf. Sci. Rep.
62
,
63
(
2007
).
11.
L. C. A.
van den Oetelaar
,
H. E.
van Benthem
,
J. H. J. M.
Helwegen
,
P. J. A.
Stapel
, and
H. H.
Brongersma
,
Surf. Interf. Anal.
26
,
537
(
1998
).
12.
13.
A.
Lehmann
,
G.
Koenig
, and
K. H.
Rieder
,
Chem. Phys. Lett.
235
,
65
(
1995
).
15.
J.
Vogt
,
J.
Henning
, and
H.
Weiss
,
Surf. Sci.
578
,
57
(
2005
).
16.
S. N.
Markin
,
S. N.
Ermolov
,
M.
Sasaki
,
R.
van Veltsenis
,
E. D.
Shtinov
,
V. G.
Glebovskii
, and
H. H.
Brongersma
,
Phys. Metals Metallogr.
102
,
274
(
2006
).

Supplementary Material

You do not currently have access to this content.