Poly(methyl methacrylate) (PMMA), known commercially by the trade name Plexiglas®, is an important polymer with numerous applications. This acrylic-based glass is often used as an alternative to conventional glass. Herein, the authors derive the optical functions of PMMA from reflection spectroscopic ellipsometry (SE) and transmission ultraviolet-visible intensity data. These functions were obtained from a 3 mm thick commercial sample of PMMA from 191 to 1688 nm. Reflection SE data were taken from the polymer surface at three different angles of incidence, where the backside of the sample was roughened prior to these measurements. To model the small absorption of the PMMA, transmission intensity measurements were also obtained with an ellipsometer at normal incidence to the sample surface. Both the reflection and transmission data were reasonably fit using a summation of a Cody-Lorentz oscillator and 14 Gaussian oscillators to account for absorptions in the sample. The optical functions obtained in this work agree well with previously reported values. For example, the authors obtained the following nx values, where x is the wavelength in nanometers, of n300 = 1.528, n500 = 1.492, and n1000 = 1.479.

1.
D.
Sun
,
N.
Miyatake
, and
H.-J.
Sue
,
Nanotechnology
18
,
215606
(
2007
).
2.
Z.
Briqech
,
A.-R.
Sebak
, and
T. A.
Denidni
,
IEEE Trans. Antennas Propag.
64
,
2971
(
2016
).
3.
H.
Wang
,
P.
Xu
,
W.
Zhong
,
L.
Shen
, and
Q.
Du
,
Polym. Degrad. Stab.
87
,
319
(
2005
).
4.
K.
Hayashi
,
H.
Hayashi
,
F.
Nakao
, and
F.
Hayashi
,
J. Cataract Refractive Surg.
27
,
817
(
2001
).
5.
M. E.
Jensen
,
A. J.
Evans
,
J. M.
Mathis
,
D. F.
Kallmes
,
H. J.
Cloft
, and
J. E.
Dion
,
Am. J. Neuroradiol.
18
,
1897
(
1997
).
6.
B.
Bilenberg
,
T.
Nielsen
,
B.
Clausen
, and
A.
Kristensen
,
J. Micromech. Microeng.
14
,
814
(
2004
).
7.
J.
Wang
,
M.
Pumera
,
M. P.
Chatrathi
,
A.
Escarpa
,
R.
Konrad
,
A.
Griebel
,
W.
Dörner
, and
H.
Löwe
,
Electrophoresis
23
,
596
(
2002
).
8.
P.
Biju
,
K. A.
Jose
,
C.
Anupama
, and
K. V.
Vijay
,
Smart Mater. Struct.
12
,
935
(
2003
).
9.
L. M.
Clayton
,
A. K.
Sikder
,
A.
Kumar
,
M.
Cinke
,
M.
Meyyappan
,
T. G.
Gerasimov
, and
J. P.
Harmon
,
Adv. Funct. Mater.
15
,
101
(
2005
).
10.
I.
Zailer
,
J. E. F.
Frost
,
V.
Chabasseur-Molyneux
,
C. J. B.
Ford
, and
M.
Pepper
,
Semicon. Sci. Technol.
11
,
1235
(
1996
).
11.
S. Y.
Chou
,
P. R.
Krauss
,
W.
Zhang
,
L.
Guo
, and
L.
Zhuang
,
J. Vac. Sci. Technol. B
15
,
2897
(
1997
).
12.
H.
Fujiwara
,
Spectroscopic Ellipsometry: Principles and Applications
(
Wiley
,
New York
,
2007
).
13.
H. G.
Tompkins
and
J. N.
Hilfiker
,
Spectroscopic Ellipsometry: Practical Application to Thin Film Characterization
(
Momentum
,
New York
,
2016
).
14.
R. A.
Synowicki
,
Phys. Status Solidi C
5
,
1085
(
2008
).
16.
R. A.
Synowicki
,
B. D.
Johs
, and
A. C.
Martin
,
Thin Solid Films
519
,
2907
(
2011
).
17.
B.
Johs
and
J. S.
Hale
,
Phys. Status Solidi A
205
,
715
(
2008
).
18.
J.
Sancho-Parramon
,
M.
Modreanu
,
S.
Bosch
, and
M.
Stchakovsky
,
Thin Solid Films
516
,
7990
(
2008
).
19.
G. E.
Jellison
,
Appl. Opt.
30
,
3354
(
1991
).
20.
D.
De Sousa Meneses
,
M.
Malki
, and
P.
Echegut
,
J. Non-Cryst. Solids
352
,
769
(
2006
).
22.
P.
Eiamchai
,
P.
Chindaudom
,
A.
Pokaipisit
, and
P.
Limsuwan
,
Curr. Appl. Phys.
9
,
707
(
2009
).
23.
C. V.
Cushman
,
B. I.
Johnson
,
A.
Martin
,
B. M.
Lunt
,
N. J.
Smith
, and
M. R.
Linford
,
Surf. Sci. Spectra
24
,
026001
(
2017
).
24.
T.
Roychowdhury
,
C. V.
Cushman
,
R. A.
Synowicki
, and
M. R.
Linford
,
Surf. Sci. Spectra
25
,
026001
(
2018
).
25.
D.
Shah
,
T.
Roychowdhury
,
J. N.
Hilfiker
, and
M. R.
Linford
, “
Polyethylene glycol: Optical constants from 191–1688 nm (0.735–6.491 eV) by spectroscopic ellipsometry,
Surf. Sci. Spectra
(submitted).
26.
D. M.
Kiefer
,
The Long Road to “Organic Glass”: Today's Chemist at Work
(
ACS
,
Washington, DC
,
2000
), pp.
45
47
.
27.
J. A.
Woollam
,
B. D.
Johs
,
C. M.
Herzinger
,
J. N.
Hilfiker
,
R. A.
Synowicki
, and
C. L.
Bungay
,
Proc. SPIE
10294
,
1029402
(
1999)
.
28.
G. H.
Bu-Abbud
,
N. M.
Bashara
, and
J. A.
Woollam
,
Thin Solid Films
138
,
27
(
1986
).
29.
C. B.
Roth
and
J. R.
Dutcher
,
Euro. Phys. J. E
12
,
103
(
2003
).
30.
K.
Kočevar
and
I.
Muševič
,
Phys. Rev. E
65
,
021703
(
2002
).
31.
H.
Tsung-Syun
,
S.
Yan-Kuin
, and
W.
Po-Cheng
,
Jpn. J. Appl. Phys.
47
,
3185
(
2008
).
32.
S.
Dazhi
,
M.
Nobuo
, and
S.
Hung-Jue
,
Nanotechnology
18
,
215606
(
2007
).
33.
J.
Brandrup
and
E. H.
Immergut
,
Polymer Handbook
(
Wiley
,
New York
,
1989
).
34.
C. B.
Walsh
and
E. I.
Franses
,
Thin Solid Films
429
,
71
(
2003
).
35.
G. E. Jellison
 Jr. and
F. A.
Modine
,
Appl. Phys. Lett.
69
,
371
(
1996
).
36.
L. B.
Glebov
,
Proc. SPIE
4347
,
16
,
2001
.
37.
B. I.
Johnson
,
C. V.
Cushman
,
J.
Rowley
,
B. M.
Lunt
,
N. J.
Smith
,
A.
Martin
, and
M. R.
Linford
,
Surf. Sci. Spectra
24
,
026002
(
2017
).
38.
C. V.
Cushman
,
B. A.
Sturgell
,
A. C.
Martin
,
B. M.
Lunt
,
N. J.
Smith
, and
M. R.
Linford
,
Surf. Sci. Spectra
23
,
55
(
2016
).

Supplementary Material

You do not currently have access to this content.