Near-ambient pressure x-ray photoelectron spectroscopy (NAP-XPS) is a less traditional form of XPS that allows samples to be analyzed at relatively high pressures, i.e., at greater than 2500 Pa. With NAP-XPS, XPS can probe moderately volatile liquids, biological samples, porous materials, and/or polymeric materials that outgas significantly. In this submission, we show survey, C 1s, and O 1s NAP-XPS spectra of polyethylene terephthalate, a common, widely used thermoplastic. The C 1s envelope was fit with different approaches, i.e., to three, four, and five Gaussian–Lorentzian sum (GLS) functions. Hartree–Fock orbital energy calculations of a model trimer served as a guide to an additional fit of the C 1s envelope. The best fit was obtained by adding an extra component to the four-component fit to compensate for adventitious carbon or additives in the polymer. The O 1s signal was well fit with two GLS peaks with a 1:1 area ratio representing the C—O and C=O moieties in PET.

1.
Z.
Ma
,
M.
Kotaki
,
T.
Yong
,
W.
He
, and
S.
Ramakrishna
,
Biomaterials
26
,
2527
(
2005
).
2.
R.
Walter
and
S.
Erhard
, “
Process for making impact resistant injection molded polyethylene terephthalate products
,” United States Patent, US3405198A (
1968
).
3.
P.
Westerhoff
,
P.
Prapaipong
,
E.
Shock
, and
A.
Hillaireau
,
Water Res.
42
,
551
(
2008
).
4.
T.
Begley
and
H.
Hollifield
,
Food Addit. Contam.
7
,
339
(
1990
).
5.
K.
Dutt
and
R.
Soni
,
Polym. Sci. Ser. B
55
,
430
(
2013
).
6.
R. K.
Foolmaun
and
T.
Ramjeeawon
,
Int. J. Life Cycle Assess.
18
,
155
(
2013
).
7.
C.
Bach
,
X.
Dauchy
,
M.-C.
Chagnon
, and
S.
Etienne
,
Water Research
,
46
,
571
583
. (
2012
)
8.
C.
Nerin
,
J.
Albinana
,
M.
Philo
,
L.
Castle
,
B.
Raffael
, and
C.
Simoneau
,
Food Addit. Contam.
20
,
668
(
2003
).
9.
A.
Doren
,
M. J.
Genet
, and
P. G.
Rouxhet
,
Surf. Sci. Spectra
3
,
337
(
1994
).
10.
P. M.
Dietrich
,
S.
Bahr
,
T.
Yamamoto
,
M.
Meyer
, and
A.
Thissen
,
J. Electron Spectrosc. Relat. Phenom.
231
,
118
(
2019
).
11.
Investigation of Polymers and Plastics with EnviroESCA (SPECS GmbH), Application Note #000381.
12.
M.
Kjærvik
,
K.
Schwibbert
,
P.
Dietrich
,
A.
Thissen
, and
W. E. S.
Unger
,
Surf. Interface Anal.
50
,
996
(
2018
).
13.
J.
Rieß
,
M.
Lublow
,
S.
Anders
,
M.
Tasbihi
,
A.
Acharjya
,
K.
Kailasam
,
A.
Thomas
,
M.
Schwarze
, and
R.
Schomäcker
,
Photochem. Photobiol. Sci.
18
,
1833
(
2019
).
14.
C.
Rodriguez
,
P.
Dietrich
,
V.
Torres-Costa
,
V.
Cebrián
,
C.
Gómez-Abad
,
A.
Díaz
,
O.
Ahumada
, and
M.
Manso Silván
,
Appl. Sur. Sci.
492
,
362
(
2019
).
15.
D. I.
Patel
 et al,
Surf. Sci. Spectra
26
,
016801
(
2019
).
16.
G.
Beamson
and
D.
Briggs
,
High Resolution, XPS of Organic Polymers: The Scienta ESCA300 Database
(
Wiley
,
Chichester
,
1992
).
17.
V.
Gupta
,
H.
Ganegoda
,
M. H.
Engelhard
,
J.
Terry
, and
M. R.
Linford
,
J. Chem. Educ.
91
,
232
(
2014
).
18.
A. P.
Pijpers
and
W. A. B.
Donners
,
J. Polym. Sci. Polym. Chem. Ed.
23
,
453
(
1985
).
19.
V.
Jain
,
M. C.
Biesinger
, and
M. R.
Linford
,
Appl. Sur. Sci.
447
,
548
(
2018
).
21.
M.
Frisch
 et al, gaussian 09, Revision D. 01,
Gaussian, Inc.
,
Wallingford
,
CT
,
2016
.
22.
S.
Tardio
and
P. J.
Cumpson
,
Surf. Interface Anal.
50
,
5
(
2018
).
23.
J.
Zhao
,
F.
Gao
,
S. P.
Pujari
,
H.
Zuilhof
, and
A. V.
Teplyakov
,
Langmuir
33
,
10792
(
2017
).
24.
V.
Jain
 et al,
Surf. Sci. Spectra
26
,
024010
(
2019
).
25.
B. I.
Johnson
,
T. G.
Avval
,
J.
Wheeler
,
H. C.
Anderson
,
A.
Diwan
,
K. J.
Stowers
,
D. H.
Ess
, and
M. R.
Linford
,
Langmuir
36
,
1878
(
2020
).

Supplementary Material

You do not currently have access to this content.