α-Fe2O3 matrices were deposited on Fluorine-doped Tin Oxide (FTO) substrates by Plasma Enhanced-Chemical Vapor Deposition (PE-CVD) from Fe(hfa)2TMEDA (hfa = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; TMEDA = N,N,N′,N′-tetramethylethylenediamine). The obtained nanosystems were subsequently functionalized by platinum nanoparticles (NPs) via Radio Frequency (RF)-sputtering, exposing samples either to a pre- or post-sputtering thermal treatment at 650 °C for one hour in air. Interestingly, Pt oxidation state in the final composite systems strongly depended on the adopted processing conditions. In this work, a detailed X-ray Photoelectron Spectroscopy (XPS) analysis was carried out in order to investigate the material chemical composition, with particular regard to the relative Pt(0)/Pt(II)/Pt(IV) content. The obtained results evidenced that, when annealing is performed prior to sputtering, only PtO and PtO2 are revealed in the final Pt/α-Fe2O3 nanocomposite. In a different way, annealing after sputtering results in the co-presence of Pt(0), Pt(II) and Pt(IV) species, the former arising from the thermal decomposition of PtO2 to metallic platinum.

1.
R. M.
Navarro Yerga
,
M. C.
Álvarez Galván
,
F.
del Valle
,
J. A.
Villoria de la Mano
, and
J. L. G.
Fierro
,
ChemSusChem
2
,
471
(
2009
).
2.
K.
Sivula
,
F.
Le Formal
, and
M.
Grätzel
,
ChemSusChem
4
,
432
(
2011
).
3.
4.
D. B.
Ingram
and
S.
Linic
,
J. Am. Chem. Soc.
133
,
5202
(
2011
).
5.
R.
van de Krol
,
Y.
Liang
, and
J.
Schoonman
,
J. Mater. Chem.
18
,
2311
(
2008
).
6.
L.
Wang
,
C.-Y.
Lee
, and
P.
Schmuki
,
Electrochim. Acta
91
,
307
(
2013
).
7.
M.
Cornuz
,
M.
Grätzel
, and
K.
Sivula
,
Chem. Vap. Deposition
16
,
291
(
2010
).
8.
G.
Carraro
 et al,
RSC Adv.
3
,
23762
(
2013
).
9.
M.
Marelli
,
A.
Naldoni
,
A.
Minguzzi
,
M.
Allieta
,
T.
Virgili
,
G.
Scavia
,
S.
Recchia
,
R.
Psaro
, and
V.
Dal Santo
,
ACS Appl. Mater. Interfaces
6
,
11997
(
2014
).
10.
G.
Carraro
,
D.
Barreca
,
E.
Comini
,
A.
Gasparotto
,
C.
Maccato
,
C.
Sada
, and
G.
Sberveglieri
,
CrystEngComm
14
,
6469
(
2012
).
11.
D.
Barreca
 et al,
Chem. Vap. Deposition
20
,
313
(
2014
).
12.
D.
Barreca
 et al,
Int. J. Hydrogen Energy
38
,
14189
(
2013
).
13.
G.
Carraro
,
D.
Barreca
,
A.
Gasparotto
, and
C.
Maccato
,
Surf. Sci. Spectra
19
,
1
(
2012
).
14.
G.
Carraro
 et al,
RSC Adv.
4
,
32174
(
2014
).
15.
Pattern No. 00-033-0664, JCPDS (2000).
16.
D.
Barreca
,
A.
Gasparotto
,
E.
Tondello
,
C.
Sada
,
S.
Polizzi
, and
A.
Benedetti
,
Chem. Vap. Deposition
9
,
199
(
2003
).
17.
D.
Barreca
,
G.
Carraro
,
A.
Gasparotto
,
C.
Maccato
,
R.
Seraglia
, and
G.
Tabacchi
,
Inorg. Chimica Acta
380
,
161
(
2012
).
18.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
,
Handbook of X-ray Photoelectron Spectroscopy
(
Perkin Elmer Corperation
,
Eden Prairie, MN
,
1992
).
19.
C.
Evangelisti
,
L. A.
Aronica
,
M.
Botavina
,
G.
Martra
,
C.
Battocchio
, and
G.
Polzonetti
,
J. Mol. Catal. A
366
,
288
(
2013
).
20.
A. S.
Aricó
,
A. K.
Shukla
,
H.
Kim
,
S.
Park
,
M.
Min
, and
V.
Antonucci
,
Appl. Surf. Sci.
172
,
33
(
2001
).
21.
C.
Cui
,
M.
Ahmadi
,
F.
Behafarid
,
L.
Gan
,
M.
Neumann
,
M.
Heggen
,
B. R.
Cuenya
, and
P.
Strasser
,
Faraday Discuss.
162
,
91
(
2013
).
22.
L. K.
Ono
,
B.
Yuan
,
H.
Heinrich
, and
B.
Roldan Cuenya
,
J. Phys. Chem. C
114
,
22119
(
2010
).
23.
A.
Mosquera
,
D.
Horwat
,
L.
Vazquez
,
A.
Gutierrez
,
A.
Erko
,
A.
Anders
,
J.
Andersson
, and
J. L.
Endrino
,
J. Mater. Res.
27
,
829
(
2012
).
24.
D.
Briggs
and
M. P.
Seah
,
Auger and Photoelectron Spectroscopy
(
Wiley
,
New York
,
1990
).
25.
26.
Multi-Technique ESCA Operators Reference Manual, Version 5.2. (Perkin-Elmer, Eden Prairie, MN, 1994) Part No. 625411, Rev. C.

Supplementary Material

You do not currently have access to this content.