Zinc oxide nanoplatelets have been successfully grown on Si(l00) by a catalyst-free Chemical Vapor Deposition (CVD) route starting from a second-generation Zn(II) molecular precursor, Zn(hfa)2?TMEDA (Hhfa=1,1,1,5,5,5-hexafluoro-2,4-pentanedione; TMEDA=N,N,N′,N′-tetramethylethylenediamine). The syntheses were performed under a nitrogen+wet oxygen atmosphere and the best results were obtained at deposition temperatures of 350 and 400 °C. The obtained samples were thoroughly characterized by several techniques, namely Glancing-Incidence X-ray Diffraction (GIXRD), Atomic Force Microscopy (AFM), Field Emission-Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray Spectroscopy (EDXS), X-ray Photoelectron (XPS) and X-ray Excited Auger Electron (XE-AES) Spectroscopies. Finally, the photocatalytic performances of ZnO nanoplatelets in the decomposition of the azo-dye Orange II were also evaluated. The present contribution is specifically dedicated to the XPS and XE-AES characterization of a representative ZnO nanoplatelet sample deposited at 350 °C. Beside the wide scan spectrum, detailed spectra for the Zn 2p3/2, Zn 3p, Zn LMM, O 1s, and C 1s are also presented. The obtained results evidenced the formation of pure zinc oxide systems under the adopted synthetic conditions.

1.
Materials Today, special issue on ZnO films and nanostructures (
2004
).
2.
J. L.
Yang
,
S. J.
An
,
W. Il
Park
,
G. C.
Yi
, and
W.
Choi
,
Adv. Mater.
16
,
1661
(
2004
).
3.
D.
Chatterjee
and
S.
Dasgupta
,
J. Photochem. Photobiol. C
6
,
186
(
2005
).
4.
L.
Armelao
,
F.
Heigl
,
A.
Jürgensen
,
R. I. R.
Blyth
,
T.
Regier
,
X.-T.
Zhou
, and
T. K.
Sham
,
J. Phys. Chem. C
111
,
10194
(
2007
).
5.
D.
Barreca
,
A. P.
Ferrucci
,
A.
Gasparotto
,
C.
Maccato
,
C.
Maragno
, and
E.
Tondello
,
Chem. Vap. Deposition
13
,
618
(
2007
).
6.
G.
Malandrino
,
M.
Blandino
,
L. M. S.
Perdicaro
,
I. L.
Fragalà
,
P.
Rossi
, and
P.
Dapporto
,
Inorg. Chem.
44
,
9684
(
2005
).
7.
J.
Ni
,
H.
Yan
,
A.
Wang
,
Y.
Yang
,
C. L.
Stern
,
A. W.
Metz
,
S.
Jin
,
L.
Wang
,
T. J.
Marks
,
J. R.
Ireland
, and
C. R.
Kannewurf
,
J. Am. Chem. Soc.
127
,
5613
(
2005
).
8.
Pattern No. 36–1451, JCPDS (2000).
9.
D.
Barreca
,
A.
Gasparotto
,
C.
Maragno
,
E.
Tondello
, and
C.
Sada
,
Chem. Vap. Deposition
10
,
229
(
2004
).
10.
D.
Barreca
,
A.
Gasparotto
,
C.
Maragno
,
E.
Tondello
,
E.
Bontempi
,
L. E.
Depero
, and
C.
Sada
,
Chem. Vap. Deposition
11
,
426
(
2005
).
11.
http://srdata.nist.gov/xps.
12.
J. F.
Moulder
,
W. F.
Stickle
,
P. E.
Sobol
, and
K. D.
Bomben
, “Handbook of X-Ray Photoelectron Spectroscopy” (Perkin Elmer Corporation, Eden Prairie, MN,
1992
).
13.
L.
Armelao
,
D.
Barreca
,
G.
Bottaro
,
A.
Gasparotto
,
D.
Leonarduzzi
,
C.
Maragno
, and
E.
Tondello
,
Surf. Sci. Spectra
13
,
9
(
2006
).
14.
D.
Briggs
and
M. P.
Seah
, “Practical Surface Analysis” (J. Wiley & Sons, Chichester, UK,
1983
).
15.
D.
Barreca
,
A.
Gasparotto
,
C.
Maragno
,
E.
Tondello
, and
T. R.
Spalding
,
Surf. Sci. Spectra
9
,
54
(
2002
).
16.
D. A.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).

Supplementary Material

You do not currently have access to this content.