Skip Nav Destination
Issues
Quantitative analysis of iron oxides using Auger electron spectroscopy combined with ion sputtering
J. Vac. Sci. Technol. 18, 690–694 (1981)
https://doi.org/10.1116/1.570928
Thickness periodicity in the Auger line shapes from epitaxial (111) Pd/ (111) Cu films
J. Vac. Sci. Technol. 18, 695–699 (1981)
https://doi.org/10.1116/1.570929
Summary Abstract: Auger lineshape analysis of polymers: polyethylene and poly(ethylene oxide)
J. Vac. Sci. Technol. 18, 712–713 (1981)
https://doi.org/10.1116/1.570933
Chemical information from XPS—applications to the analysis of electrode surfaces
J. Vac. Sci. Technol. 18, 714–721 (1981)
https://doi.org/10.1116/1.570934
Correction for loss effects in valence‐band XPS spectra by deconvolution
J. Vac. Sci. Technol. 18, 727–731 (1981)
https://doi.org/10.1116/1.570936
Application of ESCA to corrosion studies of glasses containing simulated nuclear wastes
J. Vac. Sci. Technol. 18, 732–736 (1981)
https://doi.org/10.1116/1.570937
Summary Abstract: Auger induced desorption of covalent and ionic systems
J. Vac. Sci. Technol. 18, 748–749 (1981)
https://doi.org/10.1116/1.570939
Summary Abstract: Lithium compound identification in thermally activated batteries by ISS and SIMS
J. Vac. Sci. Technol. 18, 750–751 (1981)
https://doi.org/10.1116/1.570940
Low pressure CVD of III–V compounds
J. Vac. Sci. Technol. 18, 753–755 (1981)
https://doi.org/10.1116/1.570941
Summary Abstract: Silicon MBE
J. Vac. Sci. Technol. 18, 769–771 (1981)
https://doi.org/10.1116/1.570944
Core threshold photoemission spectroscopy from the As 3d core level of GaAs (110) and effects of Ge chemisorption
J. Vac. Sci. Technol. 18, 778–783 (1981)
https://doi.org/10.1116/1.570946
Photoemission studies of heterojunction interface formation: Ge–GaAs(110) and Ge–Si(111)
J. Vac. Sci. Technol. 18, 784–786 (1981)
https://doi.org/10.1116/1.570947
LEED intensity analysis of the structure of Al on GaAs(110)
J. Vac. Sci. Technol. 18, 792–796 (1981)
https://doi.org/10.1116/1.570949
Summary Abstract: Low‐energy electron diffraction study of the surface‐defect structure of Ge grown epitaxially on GaAs(110)
J. Vac. Sci. Technol. 18, 802–803 (1981)
https://doi.org/10.1116/1.570951
Microstructure of beam‐annealed silicon
J. Vac. Sci. Technol. 18, 810–817 (1981)
https://doi.org/10.1116/1.570953
Summary Abstract: Thin film and package processing aspects of Josephson LSI
J. Vac. Sci. Technol. 18, 841–842 (1981)
https://doi.org/10.1116/1.570973
Analysis of low‐energy electron diffraction intensities from ZnS(110)
J. Vac. Sci. Technol. 18, 866–870 (1981)
https://doi.org/10.1116/1.570979
Summary Abstract: Si(111)‐7×7 surface structure using ion scattering
J. Vac. Sci. Technol. 18, 871 (1981)
https://doi.org/10.1116/1.570980
Structure study of Au–Si interface by MeV ion scattering
J. Vac. Sci. Technol. 18, 872–875 (1981)
https://doi.org/10.1116/1.570981
Si(111): Ni surface studies by AES, UPS, LEED, and ion scattering
J. Vac. Sci. Technol. 18, 880–882 (1981)
https://doi.org/10.1116/1.570983
Process conditions affecting hot electron trapping in dc magnetron sputtered MOS devices
J. Vac. Sci. Technol. 18, 890–894 (1981)
https://doi.org/10.1116/1.570986
Detection of residual damage in 75As implanted silicon single crystal by secondary ion mass spectrometry
J. Vac. Sci. Technol. 18, 895–898 (1981)
https://doi.org/10.1116/1.570987
Effect of ion implantation on CdSe thin film transistors
J. Vac. Sci. Technol. 18, 899–902 (1981)
https://doi.org/10.1116/1.570988
Summary Abstract: Site‐specific densities of states for cleaved and sputtered GaAs (110) from Auger line shapes
J. Vac. Sci. Technol. 18, 904–905 (1981)
https://doi.org/10.1116/1.570990
Summary Abstract: Growth of high quality epitaxial GaAs films by sputter deposition
J. Vac. Sci. Technol. 18, 906–907 (1981)
https://doi.org/10.1116/1.570991
Summary Abstract: Oxygen adsorption on Si(110) studied by Auger electron spectroscopy
J. Vac. Sci. Technol. 18, 908–909 (1981)
https://doi.org/10.1116/1.570992
Silicide interface stoichiometry
J. Vac. Sci. Technol. 18, 910–916 (1981)
https://doi.org/10.1116/1.570993
Metal–semiconductor interfacial reactions: Ni/Si system
J. Vac. Sci. Technol. 18, 917–923 (1981)
https://doi.org/10.1116/1.570994
Electronic states and atomic structure at the Pd2Si–Si interface
J. Vac. Sci. Technol. 18, 937–943 (1981)
https://doi.org/10.1116/1.570960
XPS investigation of the oxidation of Hg1−xCdxTe surfaces
J. Vac. Sci. Technol. 18, 944–948 (1981)
https://doi.org/10.1116/1.570961
Effects of a thin SiO2 layer on the formation of metal–silicon contacts
J. Vac. Sci. Technol. 18, 949–954 (1981)
https://doi.org/10.1116/1.570962
Variations in the stoichiometry of thin oxides on silicon as seen in the Si LVV Auger spectrum
J. Vac. Sci. Technol. 18, 955–959 (1981)
https://doi.org/10.1116/1.570963
A study of the initial oxidation of polycrystalline Si using surface analysis techniques
J. Vac. Sci. Technol. 18, 960–964 (1981)
https://doi.org/10.1116/1.570964
Summary Abstract: Auger sputter profiling studies of SiO2 grown in O2/HCl mixtures
J. Vac. Sci. Technol. 18, 971–972 (1981)
https://doi.org/10.1116/1.570966
Summary Abstract: MeV ion scattering studies of the(111)Si−SiO2 interface
J. Vac. Sci. Technol. 18, 973 (1981)
https://doi.org/10.1116/1.570967
A 1013/s 14 MeV neutron generator for cancer therapy
R. J. Walko; F. M. Bacon; R. W. Bickes, Jr.; D. F. Cowgill; J. E. Boers; A. A. Riedel; J. B. O’Hagan
J. Vac. Sci. Technol. 18, 975–982 (1981)
https://doi.org/10.1116/1.570968
Ion beam characteristics of a gas‐filled accelerator tube
J. Vac. Sci. Technol. 18, 983–986 (1981)
https://doi.org/10.1116/1.570969
Nitrogen sensitivities of a sample of commercial hot cathode ionization gage tubes
J. Vac. Sci. Technol. 18, 994–996 (1981)
https://doi.org/10.1116/1.570971
Selection and evaluation of an ultrahigh vacuum gate valve for ISABELLE beam line vacuum system
J. Vac. Sci. Technol. 18, 997–1000 (1981)
https://doi.org/10.1116/1.570972
Evaluation of ISABELLE full cell ultrahigh vacuum system
J. Vac. Sci. Technol. 18, 1001–1004 (1981)
https://doi.org/10.1116/1.570872
Application of low temperature calorimetry for the measurement of impingement rate of gas molecules
J. Vac. Sci. Technol. 18, 1005–1008 (1981)
https://doi.org/10.1116/1.570873
A simple understanding of net outgassing rate as a function of pumping speed
J. Vac. Sci. Technol. 18, 1009–1012 (1981)
https://doi.org/10.1116/1.570874
Performance of a simplified directional detector for gas molecules
J. Vac. Sci. Technol. 18, 1013–1016 (1981)
https://doi.org/10.1116/1.570875
Measurement of neutral gas density with ionization gauges in plasma physics research
J. Vac. Sci. Technol. 18, 1017–1022 (1981)
https://doi.org/10.1116/1.570876
Water vapor pressure gauge
J. Vac. Sci. Technol. 18, 1023–1025 (1981)
https://doi.org/10.1116/1.570877
Pumping of corrosive or hazardous gases with turbomolecular and oil‐filled rotary vane backing pumps
J. Vac. Sci. Technol. 18, 1026–1029 (1981)
https://doi.org/10.1116/1.570878
Material selection for TFTR limiters
J. Vac. Sci. Technol. 18, 1037–1045 (1981)
https://doi.org/10.1116/1.570881
Mechanical properties of chemical vapor deposited coatings for fusion reactor application
J. Vac. Sci. Technol. 18, 1049–1053 (1981)
https://doi.org/10.1116/1.570883
Impurity studies in fusion devices using laser‐fluorescence spectroscopy
J. Vac. Sci. Technol. 18, 1054–1061 (1981)
https://doi.org/10.1116/1.570884
Si–C–Al–O compound coatings on molybdenum for application to fusion reactor first wall components
J. Vac. Sci. Technol. 18, 1068–1071 (1981)
https://doi.org/10.1116/1.570886
Summary Abstract: Surface analysis of TFTR vacuum vessel samples subjected to the post‐weld heat treatment
J. Vac. Sci. Technol. 18, 1072 (1981)
https://doi.org/10.1116/1.570887
ETF reactor design status
J. Vac. Sci. Technol. 18, 1081–1087 (1981)
https://doi.org/10.1116/1.570889
Co adsorption on Al‐Zr at room temperature
J. Vac. Sci. Technol. 18, 1098–1101 (1981)
https://doi.org/10.1116/1.570891
Titanium gettering in Doublet III
J. S. deGrassie; R. Callis; G. Campbell; J. Garcia; E. Ledin; C. Meyer; J. Miller; P. Petersen; J. Smith; R. Stav; T. Taylor; the Doublet III Group; M. Nagami; the Jaeri Group
J. Vac. Sci. Technol. 18, 1102–1105 (1981)
https://doi.org/10.1116/1.570848
Effect of hydrogen glow discharge conditioning on Zr/Al getter pumps
J. Vac. Sci. Technol. 18, 1111–1113 (1981)
https://doi.org/10.1116/1.570850
Nonevaporable getter for ion beam fusion
J. Vac. Sci. Technol. 18, 1114–1116 (1981)
https://doi.org/10.1116/1.570851
A nonevaporable low temperature activatable getter material
J. Vac. Sci. Technol. 18, 1117–1120 (1981)
https://doi.org/10.1116/1.570852
A TSTA compound cryopump
J. Vac. Sci. Technol. 18, 1125–1130 (1981)
https://doi.org/10.1116/1.570854
Performance of BNL‐TSTA compound cryopump
J. Vac. Sci. Technol. 18, 1131–1135 (1981)
https://doi.org/10.1116/1.570855
Design and preliminary tests of the liquid helium cooled MFTF cryopumping system
J. Vac. Sci. Technol. 18, 1140–1147 (1981)
https://doi.org/10.1116/1.570857
Pumping behavior of sputter ion pumps
J. Vac. Sci. Technol. 18, 1148–1151 (1981)
https://doi.org/10.1116/1.570858
In situ observation of a cathode surface contamination of a sputter ion pump by Auger electron spectroscopy
J. Vac. Sci. Technol. 18, 1152–1155 (1981)
https://doi.org/10.1116/1.570859
Ultimate pressure of mechanical pumps and the effectiveness of foreline traps
J. Vac. Sci. Technol. 18, 1156–1159 (1981)
https://doi.org/10.1116/1.570860
Steam ejector‐condenser—stage I of a differential vacuum pumping station
J. Vac. Sci. Technol. 18, 1164–1168 (1981)
https://doi.org/10.1116/1.570862
Interrupted pumpdown of a vacuum system
J. Vac. Sci. Technol. 18, 1169–1170 (1981)
https://doi.org/10.1116/1.570863
Microfabrication of hemispherical shells for laser fusion targets
J. Vac. Sci. Technol. 18, 1175–1178 (1981)
https://doi.org/10.1116/1.570865
Solid‐state processes to produce hemispherical components for inertial fusion targets
J. Vac. Sci. Technol. 18, 1179–1182 (1981)
https://doi.org/10.1116/1.570866
Double‐shell inertial confinement fusion target fabrication
J. Vac. Sci. Technol. 18, 1187–1190 (1981)
https://doi.org/10.1116/1.570868
Interferometric measurements of multilayer and double‐shell inertial fusion targets
J. Vac. Sci. Technol. 18, 1191–1194 (1981)
https://doi.org/10.1116/1.570869
Metallic coating of microspheres
J. Vac. Sci. Technol. 18, 1198–1204 (1981)
https://doi.org/10.1116/1.570893
Recent advances in Pt coating of microspheres by a batch magnetron sputtering process
J. Vac. Sci. Technol. 18, 1205–1208 (1981)
https://doi.org/10.1116/1.570894
Coating laser microspheres with homogeneous low density foams
J. Vac. Sci. Technol. 18, 1227–1230 (1981)
https://doi.org/10.1116/1.570898
Polymer shells by the droplet method
J. Vac. Sci. Technol. 18, 1233–1237 (1981)
https://doi.org/10.1116/1.570900
’’Vacuum’’ layer double‐shell cryogenic inertial fusion targets
J. Vac. Sci. Technol. 18, 1238–1241 (1981)
https://doi.org/10.1116/1.570901
Summary Abstract: Shells from compacted powders
J. Vac. Sci. Technol. 18, 1242–1243 (1981)
https://doi.org/10.1116/1.570902
Summary Abstract: Addition of bromine as a diagnostic gas to inertial confinement fusion target microspheres
J. Vac. Sci. Technol. 18, 1244–1245 (1981)
https://doi.org/10.1116/1.570903
Dependence of the surface morphology of copper coated laser fusion targets on the dc sputter source
J. Vac. Sci. Technol. 18, 1249–1252 (1981)
https://doi.org/10.1116/1.570905
In situ seeding of high Z elements with glow discharge polymerized organic coatings
J. Vac. Sci. Technol. 18, 1255–1257 (1981)
https://doi.org/10.1116/1.570907
A drill, fill, and plug technique for fabricating laser fusion targets
J. Vac. Sci. Technol. 18, 1258–1261 (1981)
https://doi.org/10.1116/1.570908
Analysis of x‐ray emission and tritium content from glass Microshell inertial fusion targets
J. Vac. Sci. Technol. 18, 1262–1263 (1981)
https://doi.org/10.1116/1.570909
Microradiographic characterization of metal and polymer coated microspheres
J. Vac. Sci. Technol. 18, 1264–1267 (1981)
https://doi.org/10.1116/1.570910
Analysis of glass shell blowing gases from metal‐organic gels
J. Vac. Sci. Technol. 18, 1272–1275 (1981)
https://doi.org/10.1116/1.570912
Tensile testing of glass microshells
J. Vac. Sci. Technol. 18, 1279–1283 (1981)
https://doi.org/10.1116/1.570914
Summary Abstract: Fabrication of double shell targets for laser fusion
J. Vac. Sci. Technol. 18, 1288–1289 (1981)
https://doi.org/10.1116/1.570917
Summary Abstract: Strength of aluminum‐containing glass shells
J. Vac. Sci. Technol. 18, 1290–1291 (1981)
https://doi.org/10.1116/1.570918
Summary Abstract:Glass‐sealed laser fusion targets containing a gas not permeable through the wall
J. Vac. Sci. Technol. 18, 1291–1292 (1981)
https://doi.org/10.1116/1.570919
Technical and commercial aspects of plasma heat applications in primary melting, secondary remelting and refining operations
J. Vac. Sci. Technol. 18, 1293–1302 (1981)
https://doi.org/10.1116/1.570920
E‐beam deposition characteristics of reactively evaporated Ta2O5 for optical interference coatings
J. Vac. Sci. Technol. 18, 1303–1305 (1981)
https://doi.org/10.1116/1.570921
Summary Abstract: Surface modification by ion chemical and physical erosion
J. Vac. Sci. Technol. 18, 1306–1307 (1981)
https://doi.org/10.1116/1.570922
Summary Abstract: Ion bombardment cleaning of liquid gallium surfaces
J. Vac. Sci. Technol. 18, 1310–1311 (1981)
https://doi.org/10.1116/1.570924
Vacuum technology video instruction
J. Vac. Sci. Technol. 18, 1312–1318 (1981)
https://doi.org/10.1116/1.570925
Education in vacuum and surface science at the University of Wisconsin‐Milwaukee
J. Vac. Sci. Technol. 18, 1319–1322 (1981)
https://doi.org/10.1116/1.570926