Skip Nav Destination
Issues
November 1989
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Silicon etching in a direct current glow discharge of CF4/O2 and NF3/O2
J. Vac. Sci. Technol. B 7, 1321–1324 (1989)
https://doi.org/10.1116/1.584532
Fabrication and characterization of Si‐coupled superconducting field effect transistors with 0.1 μm gate
J. Vac. Sci. Technol. B 7, 1333–1337 (1989)
https://doi.org/10.1116/1.584534
Low‐temperature highly preferred polycrystalline Si film growth on crystallized amorphous Si by reactive ion beam deposition
J. Vac. Sci. Technol. B 7, 1338–1344 (1989)
https://doi.org/10.1116/1.584535
Silicon oxide deposition from tetraethoxysilane in a radio frequency downstream reactor: Mechanisms and step coverage
J. Vac. Sci. Technol. B 7, 1345–1351 (1989)
https://doi.org/10.1116/1.584536
Comparison of etch rates of silicon nitride, silicon dioxide, and polycrystalline silicon upon O2 dilution of CF4 plasmas
J. Vac. Sci. Technol. B 7, 1352–1356 (1989)
https://doi.org/10.1116/1.584537
A reflection high‐energy electron diffraction study of (100) GaAs vicinal surfaces
J. Vac. Sci. Technol. B 7, 1357–1362 (1989)
https://doi.org/10.1116/1.584538
Density of states of quasi‐two, ‐one, and ‐zero dimensional superlattices
J. Vac. Sci. Technol. B 7, 1363–1367 (1989)
https://doi.org/10.1116/1.584539
Application of photoacid generating chemistry to photobleachable deep‐ultraviolet resist
J. Vac. Sci. Technol. B 7, 1368–1371 (1989)
https://doi.org/10.1116/1.584540
Erratum: Effect of disorder on the Al/GaAs(001) interface [J. Vac. Sci. Technol. B 7, 742 (1989)]
J. Vac. Sci. Technol. B 7, 1372 (1989)
https://doi.org/10.1116/1.584542
Use of two‐dimensional protein crystals from bacteria for nonbiological applications
J. Vac. Sci. Technol. B 7, 1391–1397 (1989)
https://doi.org/10.1116/1.584544
Piezo locking stage for nanometer electron‐beam lithography
J. Vac. Sci. Technol. B 7, 1418–1421 (1989)
https://doi.org/10.1116/1.584548
Advanced direct write electron beam lithography for GaAs monolithic microwave integrated circuit production
J. Vac. Sci. Technol. B 7, 1426–1430 (1989)
https://doi.org/10.1116/1.584550
Detection of low‐contrast fiducial marks for electron beam direct write
J. Vac. Sci. Technol. B 7, 1431–1437 (1989)
https://doi.org/10.1116/1.584551
A fast Monte Carlo beam simulator using exact Coulomb scattering
J. Vac. Sci. Technol. B 7, 1438–1442 (1989)
https://doi.org/10.1116/1.584552
Electron‐beam proximity printing of half‐micron devices
J. Vac. Sci. Technol. B 7, 1443–1447 (1989)
https://doi.org/10.1116/1.584553
A focused ion beam vacuum lithography process compatible with gas source molecular beam epitaxy
J. Vac. Sci. Technol. B 7, 1467–1470 (1989)
https://doi.org/10.1116/1.584513
Etching of GaAs for patterning by irradiation with an electron beam and Cl2 molecules
J. Vac. Sci. Technol. B 7, 1471–1474 (1989)
https://doi.org/10.1116/1.584514
Energy dependence and depth distribution of dry etching‐induced damage in III/V semiconductor heterostructures
J. Vac. Sci. Technol. B 7, 1475–1478 (1989)
https://doi.org/10.1116/1.584515
Selective metalorganic reactive ion etching of molecular‐beam epitaxy GaAs/AlxGa1−xAs
J. Vac. Sci. Technol. B 7, 1479–1482 (1989)
https://doi.org/10.1116/1.584516
Selective reactive ion etching for short‐gate‐length GaAs/AlGaAs/InGaAs pseudomorphic modulation‐doped field‐effect transistors
A. A. Ketterson; E. Andideh; I. Adesida; T. L. Brock; J. Baillargeon; J. Laskar; K. Y. Cheng; J. Kolodzey
J. Vac. Sci. Technol. B 7, 1493–1496 (1989)
https://doi.org/10.1116/1.584519
Effects of chromium on the reactive ion etching of steep‐walled trenches in silicon
J. Vac. Sci. Technol. B 7, 1497–1501 (1989)
https://doi.org/10.1116/1.584520
Thermal distribution and the effect on resist sensitivity in electron‐beam direct write
J. Vac. Sci. Technol. B 7, 1502–1506 (1989)
https://doi.org/10.1116/1.584521
Proximity correction for electron beam lithography using a three‐Gaussian model of the electron energy distribution
J. Vac. Sci. Technol. B 7, 1507–1512 (1989)
https://doi.org/10.1116/1.584522
A program for Monte Carlo simulation of electron energy loss in nanostructures
J. Vac. Sci. Technol. B 7, 1513–1518 (1989)
https://doi.org/10.1116/1.584523
Conducting polyanilines: Discharge layers for electron‐beam lithography
J. Vac. Sci. Technol. B 7, 1519–1523 (1989)
https://doi.org/10.1116/1.584524
Proximity effect correction for an electron beam direct writing system EX‐7
J. Vac. Sci. Technol. B 7, 1524–1527 (1989)
https://doi.org/10.1116/1.584525
High‐performance electron beam lithography for 0.5 μm semiconductor device fabrication
J. Vac. Sci. Technol. B 7, 1528–1531 (1989)
https://doi.org/10.1116/1.584526
Investigation of the charging effect on thin SiO2 layers with the electron beam lithography system
J. Vac. Sci. Technol. B 7, 1532–1535 (1989)
https://doi.org/10.1116/1.584527
Simulation of electron beam exposure of submicron patterns
J. Vac. Sci. Technol. B 7, 1540–1545 (1989)
https://doi.org/10.1116/1.584529
Exploratory test structures for characterization of electron‐beam lithography
J. Vac. Sci. Technol. B 7, 1546–1551 (1989)
https://doi.org/10.1116/1.584530
Proximity‐effect correction in electron‐beam lithography
J. Vac. Sci. Technol. B 7, 1556–1560 (1989)
https://doi.org/10.1116/1.584488
Stress‐free and amorphous Ta4B or Ta8SiB absorbers for x‐ray masks
J. Vac. Sci. Technol. B 7, 1561–1564 (1989)
https://doi.org/10.1116/1.584489
Dynamical method for the thermomechanical study of thin membranes
J. Vac. Sci. Technol. B 7, 1565–1569 (1989)
https://doi.org/10.1116/1.584490
Pilot production of half‐micron x‐ray masks
J. Vac. Sci. Technol. B 7, 1570–1574 (1989)
https://doi.org/10.1116/1.584491
Thermal and mechanical model of x‐ray lithography masks under short pulse irradiation
J. Vac. Sci. Technol. B 7, 1575–1582 (1989)
https://doi.org/10.1116/1.584492
Sub‐100‐nm x‐ray mask technology using focused‐ion‐beam lithography
W. Chu; A. Yen; K. Ismail; M. I. Shepard; H. J. Lezec; C. R. Musil; J. Melngailis; Y.‐C. Ku; J. M. Carter; Henry I. Smith
J. Vac. Sci. Technol. B 7, 1583–1585 (1989)
https://doi.org/10.1116/1.584493
Electron scattering effects in master mask fabrication by single layer process for submicron x‐ray lithography
M. Gentili; A. Lucchesini; P. Lugli; G. Messina; A. Paoletti; S. Santangelo; A. Tucciarone; G. Petrocco
J. Vac. Sci. Technol. B 7, 1586–1590 (1989)
https://doi.org/10.1116/1.584494
Ion implant compensation of tensile stress in thick silicon nitride films for x‐ray masks
J. Vac. Sci. Technol. B 7, 1591–1593 (1989)
https://doi.org/10.1116/1.584495
Characterization of thin boron‐doped silicon membranes by double‐crystal x‐ray topography
J. Vac. Sci. Technol. B 7, 1594–1599 (1989)
https://doi.org/10.1116/1.584496
Large‐area silicon–nitride mask technology for x‐ray lithography
J. Vac. Sci. Technol. B 7, 1600–1602 (1989)
https://doi.org/10.1116/1.584497
Step‐and‐scan lithography using reduction optics
J. Vac. Sci. Technol. B 7, 1607–1612 (1989)
https://doi.org/10.1116/1.584499
Short‐wavelength annular‐field optical system for imaging tenth‐micron features
J. Vac. Sci. Technol. B 7, 1613–1615 (1989)
https://doi.org/10.1116/1.584500
The coherence factors of excimer laser radiation in projection lithography
J. Vac. Sci. Technol. B 7, 1616–1619 (1989)
https://doi.org/10.1116/1.584501
Approaches to deep ultraviolet photolithography utilizing acid hardened resin photoresist systems
J. Vac. Sci. Technol. B 7, 1620–1623 (1989)
https://doi.org/10.1116/1.584502
Aluminum oxides as imaging materials for 193‐nm excimer laser lithography
J. Vac. Sci. Technol. B 7, 1624–1628 (1989)
https://doi.org/10.1116/1.584503
Controlled‐ambient photolithography of polysilane resists at 193 nm
J. Vac. Sci. Technol. B 7, 1629–1633 (1989)
https://doi.org/10.1116/1.584504
Fabrication of 0.5 μm n‐ and p‐type metal–oxide semiconductor test devices using x‐ray lithography
G. Zwicker; W. Windbracke; H. Bernt; D. Friedrich; H.‐L. Huber; E. Krullmann; M. Pelka; P. Lange; P. Hemicker; P. Staudt‐Fischbach
J. Vac. Sci. Technol. B 7, 1642–1647 (1989)
https://doi.org/10.1116/1.584506
Soft x‐ray reduction lithography using multilayer mirrors
J. Vac. Sci. Technol. B 7, 1648–1651 (1989)
https://doi.org/10.1116/1.584507
Thermal effects in x‐ray masks during synchrotron storage ring irradiation
Y. Vladimirsky; J. Maldonado; R. Fair; R. Acosta; O. Vladimirsky; R. Viswanathan; H. Voelker; F. Cerrina; G. M. Wells; M. Hansen; R. Nachman
J. Vac. Sci. Technol. B 7, 1657–1661 (1989)
https://doi.org/10.1116/1.584509
Application of synchrotron x‐ray lithography to fabricate fully scaled 0.5 μm complementary metal–oxide semiconductor devices and circuits
L. K. Wang; J. Silverman; D. Seeger; E. Petrillo; V. DiMilia; D. Katcoff; K. Kwietniak; R. Acosta; K. Petrillo; S. Brodsky; I. Babich; O. Vladimirsky; H. Voelker; R. Viswanathan; J. Warlaumont; A. Wilson; R. Devenuto; B. Hill; L. C. Hsia; R. Rippstein; C. Wasik
J. Vac. Sci. Technol. B 7, 1662–1666 (1989)
https://doi.org/10.1116/1.584477
An electron beam measurement and inspection technique for x‐ray masks using conductive organic layer
J. Vac. Sci. Technol. B 7, 1671–1674 (1989)
https://doi.org/10.1116/1.584479
Evaluation of polycrystalline silicon membranes on fused silica for x‐ray lithography masks
J. Vac. Sci. Technol. B 7, 1675–1679 (1989)
https://doi.org/10.1116/1.584480
Low‐stress tantalum absorbers deposited by sputtering for x‐ray masks
J. Vac. Sci. Technol. B 7, 1680–1683 (1989)
https://doi.org/10.1116/1.584481
High resolution x‐ray lithography using surface‐protected development
J. Vac. Sci. Technol. B 7, 1684–1687 (1989)
https://doi.org/10.1116/1.584482
Fabrication of surface acoustic wave devices by using x‐ray lithography
Nobuyuki Yoshioka; Atsushi Sakai; Hiroaki Morimoto; Kunihiro Hosono; Yaichiro Watakabe; Shusou Wadaka
J. Vac. Sci. Technol. B 7, 1688–1691 (1989)
https://doi.org/10.1116/1.584483
High‐energy lithography illumination by Oxford’s synchrotron: A compact superconducting synchrotron x‐ray source
J. Vac. Sci. Technol. B 7, 1696–1701 (1989)
https://doi.org/10.1116/1.584485
Reflection mask technology for x‐ray projection lithography
J. Vac. Sci. Technol. B 7, 1702–1704 (1989)
https://doi.org/10.1116/1.584486
Control of fixturing‐induced distortion in x‐ray masks
J. Vac. Sci. Technol. B 7, 1705–1708 (1989)
https://doi.org/10.1116/1.584487
A simplified silylation process
Jane M. Shaw; Michael Hatzakis; Edward D. Babich; Jurij R. Paraszczak; David F. Witman; Kevin J. Stewart
J. Vac. Sci. Technol. B 7, 1709–1716 (1989)
https://doi.org/10.1116/1.584444
Exposure of ultrathin polymer resists with the scanning tunneling microscope
J. Vac. Sci. Technol. B 7, 1717–1722 (1989)
https://doi.org/10.1116/1.584445
Synthesis and characterization of an organogermanium resist: Poly(trimethylgermylmethyl methacrylate–co–chloromethylstyrene)
J. Vac. Sci. Technol. B 7, 1723–1728 (1989)
https://doi.org/10.1116/1.584446
Simple negative resist for deep ultraviolet, electron beam, and x‐ray lithography
J. Vac. Sci. Technol. B 7, 1734–1739 (1989)
https://doi.org/10.1116/1.584448
Study of aging effects in a chemical amplification resist: SAL601‐ER7
J. Vac. Sci. Technol. B 7, 1740–1744 (1989)
https://doi.org/10.1116/1.584449
Ultrathin poly(methylmethacrylate) resist films for microlithography
J. Vac. Sci. Technol. B 7, 1745–1750 (1989)
https://doi.org/10.1116/1.584450
Nanometer sidewall lithography by resist silylation
J. Vac. Sci. Technol. B 7, 1756–1759 (1989)
https://doi.org/10.1116/1.584452
A three‐dimensional profile modeling algorithm for positive photoresists
J. Vac. Sci. Technol. B 7, 1766–1770 (1989)
https://doi.org/10.1116/1.584454
Resist contrast enhancement in high resolution electron beam lithography
Kaolin Grace Chiong; Mary Beth Rothwell; Shalom Wind; Jim Bucchignano; Fritz J. Hohn; Richard Kvitek
J. Vac. Sci. Technol. B 7, 1771–1777 (1989)
https://doi.org/10.1116/1.584455
Self‐development mechanism of nitrocellulose: Heating effect
J. Vac. Sci. Technol. B 7, 1778–1781 (1989)
https://doi.org/10.1116/1.584456
Positive resist image by dry etching: New dry developed positive working system for electron beam and deep ultraviolet lithography
J. Vac. Sci. Technol. B 7, 1782–1786 (1989)
https://doi.org/10.1116/1.584457
Angular distribution and energy spread measurements of Ga clusters emitted from an isotopically pure liquid metal ion source
J. Vac. Sci. Technol. B 7, 1787–1792 (1989)
https://doi.org/10.1116/1.584458
Sub‐20‐nm‐wide line fabrication in poly(methylmethacrylate) using a Ga+ microprobe
J. Vac. Sci. Technol. B 7, 1798–1801 (1989)
https://doi.org/10.1116/1.584460
Fabrication of low‐stress silicon stencil masks for ion beam lithography
Sudipto Sen; F‐O. Fong; J. C. Wolfe; Junling J. Yen; Philip Mauger; Alex R. Shimkunas; H. Löschner; John N. Randall
J. Vac. Sci. Technol. B 7, 1802–1805 (1989)
https://doi.org/10.1116/1.584461
Droplet emission from a gallium liquid metal ion source as observed with an ion streak camera
J. Vac. Sci. Technol. B 7, 1806–1809 (1989)
https://doi.org/10.1116/1.584462
Characterization of focused ion beam micromachined features
J. Vac. Sci. Technol. B 7, 1810–1812 (1989)
https://doi.org/10.1116/1.584463
Focused ion beam induced deposition of low‐resistivity gold films
J. Vac. Sci. Technol. B 7, 1816–1818 (1989)
https://doi.org/10.1116/1.584465
Fabrication of GaAs/GaAlAs transport devices using a deep submicron trench etching technique
J. Vac. Sci. Technol. B 7, 1819–1822 (1989)
https://doi.org/10.1116/1.584672
A JEOL 100 CXII converted for use as an electron‐beam lithography system
J. Vac. Sci. Technol. B 7, 1823–1826 (1989)
https://doi.org/10.1116/1.584673
Integrated electron‐beam lithography for 0.25 μm device fabrication
J. Vac. Sci. Technol. B 7, 1827–1831 (1989)
https://doi.org/10.1116/1.584674
High aspect ratio 0.1 μm tungsten gates for InGaAs/InAlAs heterojunction transistors
J. Vac. Sci. Technol. B 7, 1836–1840 (1989)
https://doi.org/10.1116/1.584676
Short‐period gratings for long‐wavelength optical devices
J. Vac. Sci. Technol. B 7, 1841–1845 (1989)
https://doi.org/10.1116/1.584677
Computation of magnetic deflectors for electron beam lithography
J. Vac. Sci. Technol. B 7, 1846–1850 (1989)
https://doi.org/10.1116/1.584678
A novel scanning tunneling microscope controlled field emission microlens electron source
J. Vac. Sci. Technol. B 7, 1851–1854 (1989)
https://doi.org/10.1116/1.584679
Electron optical performance of a scanning tunneling microscope controlled field emission microlens system
J. Vac. Sci. Technol. B 7, 1855–1861 (1989)
https://doi.org/10.1116/1.584680
A computer program for electron gun design using second‐order finite elements
J. Vac. Sci. Technol. B 7, 1862–1869 (1989)
https://doi.org/10.1116/1.584681
Compound magnetic and electrostatic lenses for low‐voltage applications
J. Vac. Sci. Technol. B 7, 1874–1877 (1989)
https://doi.org/10.1116/1.584683
Three‐dimensional computer modeling of electrostatic and magnetic electron optical components
J. Vac. Sci. Technol. B 7, 1891–1897 (1989)
https://doi.org/10.1116/1.584687
The National Institute of Standards and Technology molecular measuring machine project: Metrology and precision engineering design
J. Vac. Sci. Technol. B 7, 1898–1902 (1989)
https://doi.org/10.1116/1.584688
Differential metrology of very large scale integration, oxide isolation structures using a confocal scanning laser microscope
J. Vac. Sci. Technol. B 7, 1913–1917 (1989)
https://doi.org/10.1116/1.584691
Metrology package for electron beam exposure tool evaluation: Application to EBES4
J. Vac. Sci. Technol. B 7, 1918–1923 (1989)
https://doi.org/10.1116/1.584692
Measurement and control of absorber stress in the fabrication of x‐ray masks
J. Vac. Sci. Technol. B 7, 1924–1926 (1989)
https://doi.org/10.1116/1.584693
Flow visualization of a spray develop ultrasonic nozzle using laser techniques
J. Vac. Sci. Technol. B 7, 1927–1932 (1989)
https://doi.org/10.1116/1.584651
Electron beam point spread function determination with a confocal scanning laser microscope
J. Vac. Sci. Technol. B 7, 1933–1940 (1989)
https://doi.org/10.1116/1.584650
Focused ion‐beam crater arrays for induced nucleation of diamond film
J. Vac. Sci. Technol. B 7, 1947–1949 (1989)
https://doi.org/10.1116/1.584653
An x‐ray photoelectron spectroscopy study on ion beam induced deposition of tungsten using WF6
J. Vac. Sci. Technol. B 7, 1959–1962 (1989)
https://doi.org/10.1116/1.584656
Tape automated bonding inner lead bonding with a laser for high performance applications
J. Vac. Sci. Technol. B 7, 1967–1970 (1989)
https://doi.org/10.1116/1.584658
An optical‐heterodyne alignment technique for quarter‐micron x‐ray lithography
J. Vac. Sci. Technol. B 7, 1971–1976 (1989)
https://doi.org/10.1116/1.584659
An alignment technique using diffracted moiré signals
Kenji Hara; Yoshiyuki Uchida; Tsutomu Nomura; Seiichiro Kimura; Dai Sugimoto; Akihiro Yoshida; Hiroshi Miyake; Takahide Iida; Shuzo Hattori
J. Vac. Sci. Technol. B 7, 1977–1979 (1989)
https://doi.org/10.1116/1.584660
Exploration of scattering from topography with massively parallel computers
J. Vac. Sci. Technol. B 7, 1984–1990 (1989)
https://doi.org/10.1116/1.584662
Overlay precision between electron beam and optical lithography systems for a mix and match GaAs technology
J. Vac. Sci. Technol. B 7, 1991–1994 (1989)
https://doi.org/10.1116/1.584663
A lateral‐surface‐superlattice structure on GaAs/AlGaAs for far‐infrared and magnetocapacitance measurements
J. Vac. Sci. Technol. B 7, 2000–2002 (1989)
https://doi.org/10.1116/1.584665
Lateral tunneling and ballistic transport in two‐dimensional electron gas devices defined by nanostructure gates
J. Vac. Sci. Technol. B 7, 2003–2006 (1989)
https://doi.org/10.1116/1.584666
Fabrication of electron beam defined ultrasmall Ohmic contacts for III–V semiconductors
J. Vac. Sci. Technol. B 7, 2007–2010 (1989)
https://doi.org/10.1116/1.584667
Engineering lateral quantum interference devices using electron beam lithography and molecular beam epitaxy
J. Vac. Sci. Technol. B 7, 2015–2019 (1989)
https://doi.org/10.1116/1.584669
The application of reactive ion etching in producing free‐standing microstructures and its effects on low‐temperature electrical transport
J. Vac. Sci. Technol. B 7, 2020–2024 (1989)
https://doi.org/10.1116/1.584670
Resonant tunneling across and mobility modulation along surface‐structured quantum wells
K. Ismail; W. Chu; R. T. Tiberio; A. Yen; H. J. Lezec; M. I. Shepard; C. R. Musil; J. Melngailis; D. A. Antoniadis; Henry I. Smith
J. Vac. Sci. Technol. B 7, 2025–2029 (1989)
https://doi.org/10.1116/1.584671
Fabrication and optical characterization of quantum wires from semiconductor materials with varying In content
J. Vac. Sci. Technol. B 7, 2030–2033 (1989)
https://doi.org/10.1116/1.584642
Implantation enhanced interdiffusion in GaAs/GaAlAs quantum structures
J. Vac. Sci. Technol. B 7, 2034–2038 (1989)
https://doi.org/10.1116/1.584643
One‐dimensional ballistic transport in AlGaAs/GaAs electron waveguides
J. Vac. Sci. Technol. B 7, 2039–2043 (1989)
https://doi.org/10.1116/1.584644
Sub‐0.2‐μm lithography by using a variable‐shaped electron beam assisted by a focused ion beam process
J. Vac. Sci. Technol. B 7, 2044–2047 (1989)
https://doi.org/10.1116/1.584645
High‐resolution technology for silicon‐integrated surface acoustic wave devices
J. Vac. Sci. Technol. B 7, 2048–2052 (1989)
https://doi.org/10.1116/1.584646
Lateral resolution of Si induced disordering of superlattices
J. Vac. Sci. Technol. B 7, 2053–2056 (1989)
https://doi.org/10.1116/1.584647
High‐resolution electron beam lithography and evaluation of first‐order distributed feedback lasers
M. Korn; M. Klingenstein; R. Germann; A. Forchel; H. Nickel; W. Schlapp; R. Lösch; K. Streubel; F. Scholz
J. Vac. Sci. Technol. B 7, 2057–2061 (1989)
https://doi.org/10.1116/1.584648
Electrical properties and defect states in ion beam deposited poly (p‐phenylene sulfide) films
J. Vac. Sci. Technol. B 7, 2062–2065 (1989)
https://doi.org/10.1116/1.584649
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Heating of photocathode via field emission and radiofrequency pulsed heating: Implication toward breakdown
Ryo Shinohara, Soumendu Bagchi, et al.