Skip Nav Destination
Issues
March 1988
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Radiation effects on metal–insulator–semiconductor diode energetic ion detectors
J. Vac. Sci. Technol. B 6, 513–516 (1988)
https://doi.org/10.1116/1.584061
Plasma deposition of SiO2 gate insulators for a‐Si thin‐film transistors
J. Vac. Sci. Technol. B 6, 517–523 (1988)
https://doi.org/10.1116/1.584062
Frequency effects and properties of plasma deposited fluorinated silicon nitride
J. Vac. Sci. Technol. B 6, 524–532 (1988)
https://doi.org/10.1116/1.584063
A new ultrafine groove fabrication method utilizing electron cyclotron resonance plasma deposition and reactive ion etching
J. Vac. Sci. Technol. B 6, 533–536 (1988)
https://doi.org/10.1116/1.584064
Controlled etching of silicate glasses by pulsed ultraviolet laser radiation
J. Vac. Sci. Technol. B 6, 537–541 (1988)
https://doi.org/10.1116/1.584065
A Monte Carlo microtopography model for investigating plasma/reactive ion etch profile evolution
J. Vac. Sci. Technol. B 6, 542–550 (1988)
https://doi.org/10.1116/1.584066
Spectroscopic studies of fluorescent emission in plasma etching of silicon nitride
J. Vac. Sci. Technol. B 6, 551–558 (1988)
https://doi.org/10.1116/1.584398
Excimer laser lithography using contrast enhancing material
J. Vac. Sci. Technol. B 6, 559–563 (1988)
https://doi.org/10.1116/1.584399
Calculation of image profiles for contrast enhanced lithography
J. Vac. Sci. Technol. B 6, 564–568 (1988)
https://doi.org/10.1116/1.584400
Oxidation of TiSi2: The role of implanted As and its behavior during oxidation
J. Vac. Sci. Technol. B 6, 569–573 (1988)
https://doi.org/10.1116/1.584401
A structure for measuring contact resistances immediately following metal deposition
J. Vac. Sci. Technol. B 6, 579–581 (1988)
https://doi.org/10.1116/1.584403
Oxygen contamination of Ge during thermal evaporation for Ohmic contacts to GaAs
J. Vac. Sci. Technol. B 6, 582–583 (1988)
https://doi.org/10.1116/1.584404
Molecular‐beam epitaxy growth of GaAs/InAs structures on (001)InP by alternating III/V fluxes
J. Vac. Sci. Technol. B 6, 593–596 (1988)
https://doi.org/10.1116/1.584405
Summary Abstract: Improved material properties of GaAs grown on novel substrate orientations
J. Vac. Sci. Technol. B 6, 597–598 (1988)
https://doi.org/10.1116/1.584406
Quantum size effect in δ‐doped AlGaAs heterostructures
J. E. Cunningham; W. T. Tsang; E. F. Schubert; G. Timp; T. H. Chiu; A. Chang; E. Agyekum; J. A. Ditzenberger
J. Vac. Sci. Technol. B 6, 599–602 (1988)
https://doi.org/10.1116/1.584407
Improvements to and characterization of GaInAs/AlInAs heterointerfaces grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 603–606 (1988)
https://doi.org/10.1116/1.584408
Summary Abstract: A model for the surface chemical kinetics of GaAs deposition by chemical‐beam epitaxy
J. Vac. Sci. Technol. B 6, 608–609 (1988)
https://doi.org/10.1116/1.584410
Intrawell exciton transport in monolayer‐flat GaAs/AlGaAs single quantum wells grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 610–612 (1988)
https://doi.org/10.1116/1.584411
Summary Abstract: A Raman study of the effects of growth stops on the interfaces of AlAs/GaAs superlattices grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 613–614 (1988)
https://doi.org/10.1116/1.584412
Molecular‐beam epitaxial growth and characterization of pseudomorphic InAs/In0.52Al0.48 As quantum wells
J. Vac. Sci. Technol. B 6, 617–619 (1988)
https://doi.org/10.1116/1.584414
Growth and characterization of AlGaAs/InGaAs/GaAs pseudomorphic structures
J. Vac. Sci. Technol. B 6, 620–624 (1988)
https://doi.org/10.1116/1.584415
Summary Abstract: The growth of strained InGaAs on GaAs: Kinetics versus energetics
J. Vac. Sci. Technol. B 6, 625–626 (1988)
https://doi.org/10.1116/1.584416
Study of molecular‐beam epitaxy GaAs1−xSbx (x<0.76) grown on GaAs(100)
J. Vac. Sci. Technol. B 6, 627–630 (1988)
https://doi.org/10.1116/1.584417
Characterization of Al0.25Ga0.75As grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 631–635 (1988)
https://doi.org/10.1116/1.584418
Summary Abstract: Growth of GaAs and AlGaAs on misoriented (110) GaAs by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 636–637 (1988)
https://doi.org/10.1116/1.584375
Growth of GaAs, AlGaAs, and InGaAs on (111)B GaAs by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 638–641 (1988)
https://doi.org/10.1116/1.584376
Summary Abstract: Reflection high‐energy electron diffraction intensity oscillation during the growth of GaAs by chemical‐beam epitaxy
J. Vac. Sci. Technol. B 6, 642–643 (1988)
https://doi.org/10.1116/1.584377
Preparation of molecular‐beam epitaxy growth high‐quality GaAs–AlGaAs quantum wells and their properties investigation
J. Vac. Sci. Technol. B 6, 644–646 (1988)
https://doi.org/10.1116/1.584378
Summary Abstract: The chemical nature and atomic structure of midgap levels in molecular‐beam epitaxially grown AlxGa1−xAs
J. Vac. Sci. Technol. B 6, 647–648 (1988)
https://doi.org/10.1116/1.584379
Capacitive hysteresis effects in 5.0 nm single and double barrier AlAs/GaAs tunneling structures grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 651–656 (1988)
https://doi.org/10.1116/1.584381
High‐performance Ga0.4In0.6As/Al0.55In0.45As pseudomorphic modulation‐doped field‐effect transistors prepared by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 657–659 (1988)
https://doi.org/10.1116/1.584382
Molecular‐beam epitaxial growth and exciton lifetime studies of lattice‐matched and coherently strained quantum wells
J. Vac. Sci. Technol. B 6, 660–664 (1988)
https://doi.org/10.1116/1.584383
Summary Abstract: Molecular‐beam epitaxial growth of high‐quality In0.52Al0.48As and In1−x−yGaxAlyAs
J. Vac. Sci. Technol. B 6, 665–667 (1988)
https://doi.org/10.1116/1.584384
Summary Abstract: Characterization of growth parameters in strained‐layer superlattices using Raman scattering
J. Vac. Sci. Technol. B 6, 668–669 (1988)
https://doi.org/10.1116/1.584385
High‐mobility inverted selectively doped heterojunctions
J. Vac. Sci. Technol. B 6, 670–673 (1988)
https://doi.org/10.1116/1.584386
Summary Abstract: Hot‐electron transport in the AlSb/InAs/GaSb double heterostructure prepared by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 674–675 (1988)
https://doi.org/10.1116/1.584387
The impact of epitaxial layer design and quality on GaInAs/AlInAs high‐electron‐mobility transistor performance
J. Vac. Sci. Technol. B 6, 678–681 (1988)
https://doi.org/10.1116/1.584389
AlGaAs/GaAs heterojunction bipolar transistor with a planar‐doped two‐dimensional hole gas base grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 682–684 (1988)
https://doi.org/10.1116/1.584390
Acoustic charge transport in an (Al,Ga)As/GaAs heterojunction structure grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 685–687 (1988)
https://doi.org/10.1116/1.584391
Summary Abstract: Molecular‐beam epitaxial growth of tunable multilayer interference optical modulators
J. Vac. Sci. Technol. B 6, 688 (1988)
https://doi.org/10.1116/1.584392
Ultralow threshold graded‐index separate‐confinement heterostructure single quantum well (Al,Ga)As lasers
J. Vac. Sci. Technol. B 6, 689–691 (1988)
https://doi.org/10.1116/1.584393
Problems related to the formation of lateral p–n junctions on channeled substrate (100) GaAs for lasers
H. P. Meier; R. F. Broom; P. W. Epperlein; E. van Gieson; Ch. Harder; H. Jäckel; W. Walter; D. J. Webb
J. Vac. Sci. Technol. B 6, 692–695 (1988)
https://doi.org/10.1116/1.584394
Studies of molecular‐beam epitaxy growth of GaAs on porous Si substrates
J. Vac. Sci. Technol. B 6, 696–698 (1988)
https://doi.org/10.1116/1.584395
Molecular‐beam epitaxial growth and characterization of GaAs on epitaxial CoSi2 films on Si(111)
J. Vac. Sci. Technol. B 6, 703–707 (1988)
https://doi.org/10.1116/1.584397
Molecular‐beam epitaxy of CrSi2 on Si(111)
J. Vac. Sci. Technol. B 6, 708–712 (1988)
https://doi.org/10.1116/1.584352
Si crossdoping control and defect control in GaAs/Si heterojunctions grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 713–716 (1988)
https://doi.org/10.1116/1.584353
Processing and characterization of GaAs grown into recessed silicon
J. Vac. Sci. Technol. B 6, 717–719 (1988)
https://doi.org/10.1116/1.584354
Summary Abstract: Reflection high‐energy electron diffraction observation of molecular‐beam epitaxially grown GexSi1−x on Si(111)
J. Vac. Sci. Technol. B 6, 721–722 (1988)
https://doi.org/10.1116/1.584356
Crystal quality of solid phase epitaxially grown silicon
J. Vac. Sci. Technol. B 6, 723–726 (1988)
https://doi.org/10.1116/1.584357
Low‐energy electron diffraction investigations of Si molecular‐beam epitaxy onto Si(100)
J. Vac. Sci. Technol. B 6, 727–730 (1988)
https://doi.org/10.1116/1.584358
Summary Abstract: Cleaning of GaAs substrate by thermal oxidation and sublimation in molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 731–732 (1988)
https://doi.org/10.1116/1.584359
Molecular‐beam epitaxial growth mechanisms on the GaAs(100) surface
J. Vac. Sci. Technol. B 6, 733–735 (1988)
https://doi.org/10.1116/1.584360
Observation of photoelectron oscillations during growth of GaAs
J. Vac. Sci. Technol. B 6, 736–739 (1988)
https://doi.org/10.1116/1.584361
Optical reflectance measurements of transients during molecular‐beam epitaxial growth on (001) GaAs
J. Vac. Sci. Technol. B 6, 740–742 (1988)
https://doi.org/10.1116/1.584362
Summary Abstract: Ordering in GaAs0.5Sb0.5 grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 743–744 (1988)
https://doi.org/10.1116/1.584363
Reproducible growth conditions by group III and group V controlled incorporation rate measurements
J. Vac. Sci. Technol. B 6, 745–748 (1988)
https://doi.org/10.1116/1.584364
Mass spectrometry during molecular‐beam epitaxy: An alternative to reflection high‐energy electron diffraction
J. Vac. Sci. Technol. B 6, 754–757 (1988)
https://doi.org/10.1116/1.584366
Summary Abstract: Molecular‐beam epitaxy and atomic‐layer epitaxy growth mechanisms for ZnSe(100)
J. Vac. Sci. Technol. B 6, 767–768 (1988)
https://doi.org/10.1116/1.584369
Reflection high‐energy electron diffraction observations during growth of ZnSxSe1−x(0≤x≤1) by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 769–772 (1988)
https://doi.org/10.1116/1.584370
Summary Abstract: Thermodynamic analysis of the molecular‐beam epitaxy of Al1−xInxAs on InP and GaAs (001) substrates
J. Vac. Sci. Technol. B 6, 775–776 (1988)
https://doi.org/10.1116/1.584372
Growth and properties of doped CdTe films grown by photoassisted molecular‐beam epitaxy
S. Hwang; R. L. Harper; K. A. Harris; N. C. Giles; R. N. Bicknell; J. F. Schetzina; D. L. Dreifus; R. M. Kolbas; M. Chu
J. Vac. Sci. Technol. B 6, 777–778 (1988)
https://doi.org/10.1116/1.584373
Light‐enhanced molecular‐beam epitaxial growth in II–VI and III–V compound semiconductors
J. Vac. Sci. Technol. B 6, 779–781 (1988)
https://doi.org/10.1116/1.584374
Summary Abstract: Properties of substitutionally doped CdMnTe films and CdMnTe–CdTe quantum well structures
R. L. Harper; S. Hwang; N. C. Giles; R. N. Bicknell; J. F. Schetzina; E. K. Suh; D. U. Bartholomew; Y. R. Lee; A. K. Ramdas
J. Vac. Sci. Technol. B 6, 782–783 (1988)
https://doi.org/10.1116/1.584330
Structural characterization of GaAs/ZnSe interfaces
J. Vac. Sci. Technol. B 6, 784–787 (1988)
https://doi.org/10.1116/1.584331
New achievements in Hg1−xCdxTe grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 6, 788–793 (1988)
https://doi.org/10.1116/1.584332
Reflection high‐energy electron diffraction oscillations during growth of metallic overlayers on ideal and nonideal metallic substrates
J. Vac. Sci. Technol. B 6, 794–798 (1988)
https://doi.org/10.1116/1.584333
Molecular‐beam epitaxy and deposition of high‐Tc superconductors
E. S. Hellman; D. G. Schlom; N. Missert; K. Char; J. S. Harris, Jr.; M. R. Beasley; A. Kapitulnik; T. H. Geballe; J. N. Eckstein; S.‐L. Weng; C. Webb
J. Vac. Sci. Technol. B 6, 799–803 (1988)
https://doi.org/10.1116/1.584334
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Filtering the beam from an ionic liquid ion source
Alexander C. G. Storey, Aydin Sabouri, et al.