Skip Nav Destination
Issues
July 1987
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Time‐resolved spectroscopic studies of the ultraviolet‐laser photolysis of Al alkyls for film growth
J. Vac. Sci. Technol. B 5, 848–852 (1987)
https://doi.org/10.1116/1.583678
Ion species dependence of focused‐ion‐beam lithography
J. Vac. Sci. Technol. B 5, 853–857 (1987)
https://doi.org/10.1116/1.583679
Subsurface cobalt diffusion in silicon single crystal from infinitesimally small cobalt diffusion source
J. Vac. Sci. Technol. B 5, 858–864 (1987)
https://doi.org/10.1116/1.583680
Stability of polycrystalline silicon‐on‐cobalt disilicide–silicon structures
J. Vac. Sci. Technol. B 5, 865–869 (1987)
https://doi.org/10.1116/1.583681
Electrical properties of SrF2/InP (100) diodes and SrF2 thin films
J. Vac. Sci. Technol. B 5, 870–875 (1987)
https://doi.org/10.1116/1.583682
Reactive ion‐etching‐induced damage in silicon using SF6 gas mixtures
J. Vac. Sci. Technol. B 5, 876–882 (1987)
https://doi.org/10.1116/1.583683
Application of reactive‐ion‐beam etching to recessed‐gate GaAs metal–semiconductor field‐effect transistors
J. Vac. Sci. Technol. B 5, 889–893 (1987)
https://doi.org/10.1116/1.583685
GaAs and AlGaAs crystallographic etching with low‐pressure chlorine radicals in an ultrahigh‐vacuum system
J. Vac. Sci. Technol. B 5, 894–901 (1987)
https://doi.org/10.1116/1.583686
Secondary ion mass spectrometry study of Pd‐based ohmic contacts to GaAs and AlGaAs/GaAs
J. Vac. Sci. Technol. B 5, 902–907 (1987)
https://doi.org/10.1116/1.583687
Comment on ‘‘Silver diffusion in Ag2Se/GeSe2 inorganic resist system’’
J. Vac. Sci. Technol. B 5, 910–911 (1987)
https://doi.org/10.1116/1.583689
Reply to ‘‘Comment on ‘Silver diffusion in Ag2Se/GeSe2 inorganic resist’ ’’
J. Vac. Sci. Technol. B 5, 911–912 (1987)
https://doi.org/10.1116/1.583690
Inverse photoemission from surface and interface states of III–V semiconductors
J. Vac. Sci. Technol. B 5, 930–932 (1987)
https://doi.org/10.1116/1.583692
Theoretical studies of reconstructed GaAs(100) surfaces using first principle calculations
J. Vac. Sci. Technol. B 5, 933–938 (1987)
https://doi.org/10.1116/1.583693
Steps on (001) silicon surfaces
J. Vac. Sci. Technol. B 5, 939–944 (1987)
https://doi.org/10.1116/1.583694
Dependence on ionicity of the (110) surface relaxations of zinc‐blende semiconductors
J. Vac. Sci. Technol. B 5, 953–955 (1987)
https://doi.org/10.1116/1.583696
Mobility anisotropy and magnetoresistance at an (InAs)1(GaAs)1–InP heterointerface grown on a (001) vicinal InP substrate
J. Vac. Sci. Technol. B 5, 960–963 (1987)
https://doi.org/10.1116/1.583698
Negative differential conductivity in lateral surface superlattices
J. Vac. Sci. Technol. B 5, 964–966 (1987)
https://doi.org/10.1116/1.583699
Hysteresis predicted in I–V curve of heterojunction resonant tunneling diodes simulated by a self‐consistent quantum method
J. Vac. Sci. Technol. B 5, 967–970 (1987)
https://doi.org/10.1116/1.583700
Electrical properties and applications of InxAl1−xAs/InP
J. Vac. Sci. Technol. B 5, 971–975 (1987)
https://doi.org/10.1116/1.583827
Two‐dimensional electron transport in InP surface layers
J. Vac. Sci. Technol. B 5, 976–979 (1987)
https://doi.org/10.1116/1.583828
Summary Abstract: Low‐temperature electrical transport studies of the two‐dimensional electron gas at p‐InSb interfaces
T. W. Kim; Y. H. Chang; Y. D. Zheng; A. A Reeder; B. D. McCombe; R. F. C. Farrow; T. Temofonte; F. A. Shirland; A. Noreika
J. Vac. Sci. Technol. B 5, 980–981 (1987)
https://doi.org/10.1116/1.583829
Reduced reverse bias current in Al–GaAs and In0.75Ga0.25As–GaAs junctions containing an interfacial arsenic layer
J. Vac. Sci. Technol. B 5, 982–984 (1987)
https://doi.org/10.1116/1.583830
Summary Abstract: Electron spin resonance studies of electron transport across the metal–silicon interface
J. Vac. Sci. Technol. B 5, 985–986 (1987)
https://doi.org/10.1116/1.583831
Initial stages of Schottky barrier formation: Temperature effects
J. Vac. Sci. Technol. B 5, 987–991 (1987)
https://doi.org/10.1116/1.583833
Auger electron spectroscopy and low‐energy electron diffraction investigation of the InSb(110)+Ag system at 10–300 K with θ=0–20 monolayers
J. Vac. Sci. Technol. B 5, 992–997 (1987)
https://doi.org/10.1116/1.583834
Kinetics study of initial stage band bending at metal GaAs(110) interfaces
J. Vac. Sci. Technol. B 5, 998–1002 (1987)
https://doi.org/10.1116/1.583835
Cr/InSb(110): A study of interface development with high‐resolution core‐level photoemission
J. Vac. Sci. Technol. B 5, 1003–1006 (1987)
https://doi.org/10.1116/1.583763
Variation of n‐GaAs (100) interface Fermi level by Ge and Si overlayers
J. Vac. Sci. Technol. B 5, 1015–1019 (1987)
https://doi.org/10.1116/1.583765
Mechanism for annealing‐induced changes in the electrical characteristics of Al/GaAs and Al/InP Schottky contacts
J. Vac. Sci. Technol. B 5, 1020–1029 (1987)
https://doi.org/10.1116/1.583766
Structure and lateral diffusion of ohmic contacts in AlGaAs/GaAs high electron mobility transistors and GaAs devices
J. Vac. Sci. Technol. B 5, 1030–1032 (1987)
https://doi.org/10.1116/1.583767
Chemical reaction and Schottky barrier formation at the Ti/InP(110) and Sn/InP(110) interfaces: Reactive versus nonreactive cases
J. Vac. Sci. Technol. B 5, 1033–1038 (1987)
https://doi.org/10.1116/1.583723
Reactive interface formation—Pt/Si〈111〉: Nucleation and morphology
J. Vac. Sci. Technol. B 5, 1039–1043 (1987)
https://doi.org/10.1116/1.583724
The InP(110)/Sb interface: Ohmic behavior at large Sb coverages
J. Vac. Sci. Technol. B 5, 1044–1047 (1987)
https://doi.org/10.1116/1.583725
The role of order on the interface properties of Sb/GaAs(110)
J. Vac. Sci. Technol. B 5, 1048–1053 (1987)
https://doi.org/10.1116/1.583726
InSb growth on Sb(111) single crystals studied by angle‐resolved photoemission
J. Vac. Sci. Technol. B 5, 1057–1061 (1987)
https://doi.org/10.1116/1.583728
Mechanism of Schottky barrier formation: The role of amphoteric native defects
J. Vac. Sci. Technol. B 5, 1062–1067 (1987)
https://doi.org/10.1116/1.583729
Chemical and electronic properties of the Pt/GaAs(110) interface
C. E. McCants; Tom Kendelewicz; K. A. Bertness; P. H. Mahowald; M. D. Williams; R. S. List; I. Lindau; William E. Spicer
J. Vac. Sci. Technol. B 5, 1068–1074 (1987)
https://doi.org/10.1116/1.583730
Unpinned Schottky barrier formation at metal–GaP interfaces: A representative III–V compound interface
P. Chiaradia; L. J. Brillson; M. Slade; R. E. Viturro; D. Kilday; N. Tache; M. Kelly; G. Margaritondo
J. Vac. Sci. Technol. B 5, 1075–1079 (1987)
https://doi.org/10.1116/1.583731
Summary Abstract: Chemical reaction at the In on GaAs (110) interface: A synchrotron radiation photoemission study
J. Vac. Sci. Technol. B 5, 1080–1082 (1987)
https://doi.org/10.1116/1.583732
A photoemission study of the Si(111)/Gd interface: A comparison with the bulk silicides
J. Vac. Sci. Technol. B 5, 1083–1086 (1987)
https://doi.org/10.1116/1.583733
Wavelength dependence of optically induced oxidation of GaAs(100)
J. Vac. Sci. Technol. B 5, 1087–1091 (1987)
https://doi.org/10.1116/1.583734
Thermal stability of the anodic oxide/Hg1−xCdxTe interface
J. Vac. Sci. Technol. B 5, 1092–1096 (1987)
https://doi.org/10.1116/1.583735
On the chemistry of passivated oxide–InP interfaces
J. Vac. Sci. Technol. B 5, 1108–1112 (1987)
https://doi.org/10.1116/1.583737
High‐resolution electron‐energy‐loss spectroscopy studies of GaAs (100) surfaces
J. Vac. Sci. Technol. B 5, 1113–1118 (1987)
https://doi.org/10.1116/1.583738
Pinning of the Fermi level close to the valence‐band top by chlorine adsorbed on cleaved GaAs(110) surfaces
J. Vac. Sci. Technol. B 5, 1119–1124 (1987)
https://doi.org/10.1116/1.583739
Cleavage‐related electronic states of Al–InP(110) interfaces
J. Vac. Sci. Technol. B 5, 1125–1128 (1987)
https://doi.org/10.1116/1.583740
Cleaning and nitridation of GaAs surfaces in multipolar plasmas investigated by in situ photoemission and spectroscopic ellipsometry
J. Vac. Sci. Technol. B 5, 1129–1134 (1987)
https://doi.org/10.1116/1.583741
Surface structure and interface formation of Si on GaAs(100)
J. Vac. Sci. Technol. B 5, 1135–1140 (1987)
https://doi.org/10.1116/1.583742
Laser probing of gallium atom interactions with silicon(100) surfaces
J. Vac. Sci. Technol. B 5, 1141–1146 (1987)
https://doi.org/10.1116/1.583743
Summary Abstract: Structural analysis of ultrathin epitaxial Ge/Si films on Si(100)
J. Vac. Sci. Technol. B 5, 1147–1149 (1987)
https://doi.org/10.1116/1.583744
Sublattice allocation and antiphase domain suppression in polar‐on‐nonpolar nucleation
J. Vac. Sci. Technol. B 5, 1150–1154 (1987)
https://doi.org/10.1116/1.583702
Summary Abstract: Atomic structure of semiconductor interfaces
J. Vac. Sci. Technol. B 5, 1155 (1987)
https://doi.org/10.1116/1.583701
Control of dislocations in GaAs grown on Si(211) by molecular beam epitaxy
J. Vac. Sci. Technol. B 5, 1156–1161 (1987)
https://doi.org/10.1116/1.583703
A study of strain‐related effects in the molecular‐beam epitaxy growth of InxGa1−xAs on GaAs using reflection high‐energy electron diffraction
J. Vac. Sci. Technol. B 5, 1162–1166 (1987)
https://doi.org/10.1116/1.583704
Formation of misfit and threading dislocations in molecular‐beam epitaxy grown strained layer epitaxy: Role of growth modes
J. Vac. Sci. Technol. B 5, 1167–1170 (1987)
https://doi.org/10.1116/1.583705
Evaluation of interface defects and the effect of iodine impurity in low‐resistivity metal‐organic chemical vapor deposition‐grown ZnS films on GaAs
J. Vac. Sci. Technol. B 5, 1171–1178 (1987)
https://doi.org/10.1116/1.583706
Atomistic numerical simulation of epitaxial crystal growth
J. Vac. Sci. Technol. B 5, 1179–1183 (1987)
https://doi.org/10.1116/1.583707
Kinetic processes in atomic‐layer epitaxy of GaAs and AlAs using a pulsed vapor‐phase method
J. Vac. Sci. Technol. B 5, 1184–1186 (1987)
https://doi.org/10.1116/1.583708
Interdiffusion of Al and Ga in (Al,Ga)As/GaAs superlattices
J. Vac. Sci. Technol. B 5, 1187–1190 (1987)
https://doi.org/10.1116/1.583709
Cathodoluminescence atomic scale images of monolayer islands at GaAs/GaAlAs interfaces
J. Vac. Sci. Technol. B 5, 1191–1197 (1987)
https://doi.org/10.1116/1.583710
Electronic structure of GaAs–Ga1−xAlxAs quantum wires
J. Vac. Sci. Technol. B 5, 1198–1203 (1987)
https://doi.org/10.1116/1.583711
Interface structure and optical properties of quantum wells and quantum boxes
J. Vac. Sci. Technol. B 5, 1204–1208 (1987)
https://doi.org/10.1116/1.583712
Effect of growth sequence on the band discontinuities at AlAs/GaAs (100) and (110) heterojunction interfaces
J. Vac. Sci. Technol. B 5, 1209–1214 (1987)
https://doi.org/10.1116/1.583713
Measurement of heterojunction band offsets in InP/Ga0.47In0.53As by admittance spectroscopy
J. Vac. Sci. Technol. B 5, 1215–1220 (1987)
https://doi.org/10.1116/1.583714
Summary Abstract: Valence band discontinuity in Te‐based II–VI heterojunctions HgTe, CdTe, and ZnTe
J. Vac. Sci. Technol. B 5, 1229–1230 (1987)
https://doi.org/10.1116/1.583717
InSb–CdTe interfaces: A combined study by soft x‐ray photoemission, low‐energy electron diffraction, and Raman spectroscopy
J. Vac. Sci. Technol. B 5, 1233–1238 (1987)
https://doi.org/10.1116/1.583719
Calculation of the valence band offsets of common‐anion semiconductor heterojunctions from core levels: The role of cation d orbitals
J. Vac. Sci. Technol. B 5, 1239–1245 (1987)
https://doi.org/10.1116/1.583720
Heterojunction band offsets and scaling
J. Vac. Sci. Technol. B 5, 1246–1249 (1987)
https://doi.org/10.1116/1.583721
Core electron binding energy shifts and screening in tetrahedral semiconductors
J. Vac. Sci. Technol. B 5, 1250–1255 (1987)
https://doi.org/10.1116/1.583722
Summary Abstract: Light scattering determination of band offsets in GaAs–InxGa1−xAs quantum wells
J. Vac. Sci. Technol. B 5, 1256–1257 (1987)
https://doi.org/10.1116/1.583814
Valence‐band discontinuity at the Ge/InP(110) interface
J. Vac. Sci. Technol. B 5, 1258–1262 (1987)
https://doi.org/10.1116/1.583815
Structure of CdTe/ZnTe superlattices
J. Vac. Sci. Technol. B 5, 1263–1267 (1987)
https://doi.org/10.1116/1.583816
Electronic structure of (001) and (111) growth axis InAs–Ga1−xInxSb strained‐layer superlattices
J. Vac. Sci. Technol. B 5, 1268–1273 (1987)
https://doi.org/10.1116/1.583817
New optical transitions in Ge–Si ordered atomic‐layer structures
J. Vac. Sci. Technol. B 5, 1274–1278 (1987)
https://doi.org/10.1116/1.583818
The Si/GaAs (110) heterojunction: Strain, disorder, and valence‐band discontinuity
J. Vac. Sci. Technol. B 5, 1279–1283 (1987)
https://doi.org/10.1116/1.583819
Summary Abstract: Valence‐band discontinuities in (100) GaSb/AlSb and GaSb/InAs heterojunctions
G. J. Gualtieri; R. G. Nuzzo; R. J. Malik; J. F. Walker; L. C. Feldman; W. A. Sunder; G. P. Schwartz
J. Vac. Sci. Technol. B 5, 1284–1285 (1987)
https://doi.org/10.1116/1.583820
Summary Abstract: A nondestructive synchrotron radiation photoemission study of the band lineup for buried GaSb–AlSb interfaces
D. W. Niles; B. Lai; J. T. McKinley; G. Margaritondo; G. Wells; F. Cerrina; G. J. Gualtieri; G. P. Schwartz
J. Vac. Sci. Technol. B 5, 1286–1287 (1987)
https://doi.org/10.1116/1.583821
Self‐consistent solutions of electronic wave functions at GaAs–AlxGa1−xAs interfaces
J. Vac. Sci. Technol. B 5, 1288–1294 (1987)
https://doi.org/10.1116/1.583822
Theory of electroabsorption in asymmetric‐graded‐gap quantum wells
J. Vac. Sci. Technol. B 5, 1295–1299 (1987)
https://doi.org/10.1116/1.583823
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Novel low-temperature and high-flux hydrogen plasma source for extreme-ultraviolet lithography applications
A. S. Stodolna, T. W. Mechielsen, et al.
High-efficiency metalenses for zone-plate-array lithography
Henry I. Smith, Mark Mondol, et al.