Skip Nav Destination
Issues
January 1987
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Orientation dependence of crystal defects formation in Si molecular beam epitaxy
J. Vac. Sci. Technol. B 5, 10–14 (1987)
https://doi.org/10.1116/1.583606
Photodeposition rates of metal from metal alkyls
Robert R. Krchnavek; Heinz H. Gilgen; Julian C. Chen; Ping S. Shaw; Thomas J. Licata; Richard M. Osgood, Jr.
J. Vac. Sci. Technol. B 5, 20–26 (1987)
https://doi.org/10.1116/1.583866
X‐ray sources for microlithography created by laser radiation at λ=0.26 μm
J. Vac. Sci. Technol. B 5, 27–32 (1987)
https://doi.org/10.1116/1.583883
Computer‐controlled electron‐beam writing system for thin film micro‐optics
J. Vac. Sci. Technol. B 5, 33–36 (1987)
https://doi.org/10.1116/1.583898
EBES4: A new electron‐beam exposure system
D. S. Alles; C. J. Biddick; J. H. Bruning; J. T. Clemens; R. J. Collier; E. A. Gere; L. R. Harriott; F. Leone; R. Liu; T. J. Mulrooney; R. J. Nielsen; N. Paras; R. M. Richman; C. M. Rose; D. P. Rosenfeld; D. E. A. Smith; M. G. R. Thomson
J. Vac. Sci. Technol. B 5, 47–52 (1987)
https://doi.org/10.1116/1.583925
The EBES4 electron‐beam column
J. Vac. Sci. Technol. B 5, 53–56 (1987)
https://doi.org/10.1116/1.583926
A hydraulic X–Y stage system for application in electron beam exposure systems
R. J. Nielsen; J. H. Bruning; R. M. Richman; C. J. Biddick; J. Giacchi; G. J. W. Kossyk; D. R. Bush; S. J. Barna; D. S. Alles
J. Vac. Sci. Technol. B 5, 57–60 (1987)
https://doi.org/10.1116/1.583927
A high‐speed patterning controller for the EB60 electron beam lithography system
J. Vac. Sci. Technol. B 5, 66–69 (1987)
https://doi.org/10.1116/1.583929
A high dose and high accuracy variable shaped electron beam exposure system for quartermicron device fabrication
J. Vac. Sci. Technol. B 5, 70–74 (1987)
https://doi.org/10.1116/1.583930
A novel high‐speed nanometric electron beam lithography system: EB–F
J. Vac. Sci. Technol. B 5, 75–78 (1987)
https://doi.org/10.1116/1.583931
Automatic electron beam metrology system for development of very large‐scale integrated devices
J. Vac. Sci. Technol. B 5, 79–83 (1987)
https://doi.org/10.1116/1.583932
Electron beam probing system with ultrahigh time resolution
J. Vac. Sci. Technol. B 5, 84–87 (1987)
https://doi.org/10.1116/1.583933
High resolution patterning system with a single bore objective lens
J. Vac. Sci. Technol. B 5, 88–91 (1987)
https://doi.org/10.1116/1.583934
Prototype to production using the Hewlett–Packard quarter‐micron electron beam system
J. Vac. Sci. Technol. B 5, 92–96 (1987)
https://doi.org/10.1116/1.583935
Electron‐beam programming and testing of complementary metal‐oxide semiconductor systems
J. Vac. Sci. Technol. B 5, 97–101 (1987)
https://doi.org/10.1116/1.583936
Archival information storage by selective electron beam melting of structured targets
J. Vac. Sci. Technol. B 5, 102–104 (1987)
https://doi.org/10.1116/1.583604
The effect of acceleration voltage on linewidth control with a variable‐shaped electron beam system
J. Vac. Sci. Technol. B 5, 105–109 (1987)
https://doi.org/10.1116/1.583605
Submicron electron‐beam lithography using a beam size comparable to the linewidth control tolerance
M. G. Rosenfield; J. J. Bucchignano; S. A. Rishton; D. P. Kern; L. M. Kettell; W. W. Molzen; F. J. Hohn; R. Viswanathan; J. M. Warlaumont
J. Vac. Sci. Technol. B 5, 114–119 (1987)
https://doi.org/10.1116/1.583843
Very high voltage (500 kV) electron beam lithography for thick resists and high resolution
J. Vac. Sci. Technol. B 5, 120–123 (1987)
https://doi.org/10.1116/1.583844
Studies of energy dissipation in resist films by a Monte Carlo simulation based on the Mott cross section
J. Vac. Sci. Technol. B 5, 124–128 (1987)
https://doi.org/10.1116/1.583845
Theoretical analysis of electron‐beam exposure parameters and etching selectivity upon organosilicon bilayer resist images
J. Vac. Sci. Technol. B 5, 129–134 (1987)
https://doi.org/10.1116/1.583846
Point exposure distribution measurements for proximity correction in electron beam lithography on a sub‐100 nm scale
J. Vac. Sci. Technol. B 5, 135–141 (1987)
https://doi.org/10.1116/1.583847
Three‐dimensional Monte Carlo calculation by a supercomputer
J. Vac. Sci. Technol. B 5, 142–145 (1987)
https://doi.org/10.1116/1.583848
Characterization of a low voltage, high current density electron probe
J. Vac. Sci. Technol. B 5, 150–152 (1987)
https://doi.org/10.1116/1.583850
Optimization of the magnetic deflection system by the method of orthogonal design
J. Vac. Sci. Technol. B 5, 153–155 (1987)
https://doi.org/10.1116/1.583851
Computer simulation of current density profiles in focused ion beams
J. Vac. Sci. Technol. B 5, 169–174 (1987)
https://doi.org/10.1116/1.583856
Investigation of the liquid metal ion source cluster beam constituents and their role in the properties of the deposited film
J. Vac. Sci. Technol. B 5, 178–183 (1987)
https://doi.org/10.1116/1.583858
Development of boron liquid metal ion source for focused ion beam system
J. Vac. Sci. Technol. B 5, 190–194 (1987)
https://doi.org/10.1116/1.583860
Long‐lifetime, reliable liquid metal ion sources for boron, arsenic, and phosphorus
W. M. Clark, Jr.; R. L. Seliger; M. W. Utlaut; A. E. Bell; L. W. Swanson; G. A. Schwind; J. B. Jergenson
J. Vac. Sci. Technol. B 5, 197–202 (1987)
https://doi.org/10.1116/1.583862
Formation of submicron isolation region in GaAs by Ga focused ion beam implantation
J. Vac. Sci. Technol. B 5, 203–206 (1987)
https://doi.org/10.1116/1.583864
Micromachining of optical structures with focused ion beams
J. Vac. Sci. Technol. B 5, 207–210 (1987)
https://doi.org/10.1116/1.583865
A GaAs metal‐semiconductor field‐effect transistor with a mushroom gate fabricated by mixed exposure of focused ion beams
J. Vac. Sci. Technol. B 5, 211–214 (1987)
https://doi.org/10.1116/1.583867
Masked ion beam lithography for submicrometer‐gate‐length transistors
J. Vac. Sci. Technol. B 5, 215–218 (1987)
https://doi.org/10.1116/1.583868
A minimum step fabrication process for the all‐silicon channeling mask
J. Vac. Sci. Technol. B 5, 219–222 (1987)
https://doi.org/10.1116/1.583869
Channeling transmission of protons through thin silicon membranes
J. Vac. Sci. Technol. B 5, 228–231 (1987)
https://doi.org/10.1116/1.583871
The characterization and optimization of masked ion beam lithography with 〈100〉 silicon channeling masks
J. Vac. Sci. Technol. B 5, 232–235 (1987)
https://doi.org/10.1116/1.583872
Geometrical design of an alignment mark for focused ion beam implantation in GaAs using Monte Carlo simulation of ion trajectories
J. Vac. Sci. Technol. B 5, 236–240 (1987)
https://doi.org/10.1116/1.583873
An automatic mask alignment technique using moiré interference
J. Vac. Sci. Technol. B 5, 244–247 (1987)
https://doi.org/10.1116/1.583875
Thin film structure to reduce radiation damage in x‐ray lithography
J. Vac. Sci. Technol. B 5, 248–252 (1987)
https://doi.org/10.1116/1.583876
Application of x‐ray lithography for manufacturing a metal‐oxide semiconductor field‐effect transistor tetrode
J. Vac. Sci. Technol. B 5, 253–256 (1987)
https://doi.org/10.1116/1.583877
Radiation damage effects in boron nitride mask membranes subjected to x‐ray exposures
J. Vac. Sci. Technol. B 5, 257–261 (1987)
https://doi.org/10.1116/1.583878
The use of diffraction techniques for the study of in‐plane distortions of x‐ray masks
J. Vac. Sci. Technol. B 5, 272–277 (1987)
https://doi.org/10.1116/1.583881
Tungsten: An alternative to gold for x‐ray masks
J. Vac. Sci. Technol. B 5, 283–287 (1987)
https://doi.org/10.1116/1.583884
Wafer flatness as a contributor to defocus and to submicron image tolerances in step‐and‐repeat photolithography
J. Vac. Sci. Technol. B 5, 299–303 (1987)
https://doi.org/10.1116/1.583887
Coherence of defect interactions with features in optical imaging
J. Vac. Sci. Technol. B 5, 308–312 (1987)
https://doi.org/10.1116/1.583889
Fabrication and phonon transport studies in nanometer scale free‐standing wires
J. Vac. Sci. Technol. B 5, 314–317 (1987)
https://doi.org/10.1116/1.583891
Fabrication of 30‐nm‐scale structures for electron transport studies using a polymethylmethacrylate bilayer resist
J. Vac. Sci. Technol. B 5, 318–321 (1987)
https://doi.org/10.1116/1.583892
Fabrication of ultrasmall devices on thin active GaAs membranes
J. Vac. Sci. Technol. B 5, 322–325 (1987)
https://doi.org/10.1116/1.583893
Fabrication of ultrahigh resolution structures in compound semiconductor heterostructures
J. Vac. Sci. Technol. B 5, 326–327 (1987)
https://doi.org/10.1116/1.583894
An apparatus for batch fabrication of micromechanical elements by ion beam machining
J. Vac. Sci. Technol. B 5, 337–341 (1987)
https://doi.org/10.1116/1.583897
A study of anisotropic trench etching of Si with NF3–halocarbon
J. Vac. Sci. Technol. B 5, 342–346 (1987)
https://doi.org/10.1116/1.583899
Electrostatic probe analysis of microwave plasmas used for polymer etching
J. Vac. Sci. Technol. B 5, 347–354 (1987)
https://doi.org/10.1116/1.583900
Unidirectional deposition of aluminum using nozzle jet beam technique
J. Vac. Sci. Technol. B 5, 359–362 (1987)
https://doi.org/10.1116/1.583902
Cermet as an inorganic resist for ion lithography
J. Vac. Sci. Technol. B 5, 379–381 (1987)
https://doi.org/10.1116/1.583907
Enhanced plasma etch resistance of acrylic acid–calcium acetate modified poly(methylmethacrylate)
J. Vac. Sci. Technol. B 5, 382–385 (1987)
https://doi.org/10.1116/1.583908
Aryloxy‐poly(phosphazenes) as negative‐working, oxygen reactive ion etching resistant resist materials
J. Vac. Sci. Technol. B 5, 386–388 (1987)
https://doi.org/10.1116/1.583909
Attainment of 0.13‐μm lines and spaces by excimer‐laser projection lithography in ‘‘diamond‐like’’ carbon‐resist
J. Vac. Sci. Technol. B 5, 389–390 (1987)
https://doi.org/10.1116/1.583910
The percolation approach to the development of pulsed laser exposed positive photoresists
J. Vac. Sci. Technol. B 5, 391–395 (1987)
https://doi.org/10.1116/1.583911
The evaluation of positive acting resists for lithography at 248 nm
J. Vac. Sci. Technol. B 5, 396–401 (1987)
https://doi.org/10.1116/1.583912
A practical electron beam direct writing process technology for submicron device fabrication
J. Vac. Sci. Technol. B 5, 402–404 (1987)
https://doi.org/10.1116/1.583913
Visible‐laser photochemical etching of Cr, Mo, and W
J. Vac. Sci. Technol. B 5, 414–418 (1987)
https://doi.org/10.1116/1.583916
Laser‐direct‐writing processes: Metal deposition, etching, and applications to microcircuits
J. Vac. Sci. Technol. B 5, 419–422 (1987)
https://doi.org/10.1116/1.583917
Temperature dependence of maskless ion beam assisted etching of InP and Si using focused ion beam
Yukinori Ochiai; Kenji Gamo; Susumu Namba; Kazuhiko Shihoyama; Akio Masuyama; Takao Shiokawa; Koichi Toyoda
J. Vac. Sci. Technol. B 5, 423–426 (1987)
https://doi.org/10.1116/1.583918
Summary Abstract: Surface reaction enhancement via low energy electron bombardment and secondary electron emission
J. Vac. Sci. Technol. B 5, 427–429 (1987)
https://doi.org/10.1116/1.583919
Exposure of calcium fluoride resist with the scanning tunneling microscope
J. Vac. Sci. Technol. B 5, 430–433 (1987)
https://doi.org/10.1116/1.583920
Study of half‐micron photolithography by means of contrast enhanced lithography process
J. Vac. Sci. Technol. B 5, 434–438 (1987)
https://doi.org/10.1116/1.583921
Comparison of proximity effects in contrast enhancement layer and bilayer resist processes
J. Vac. Sci. Technol. B 5, 443–448 (1987)
https://doi.org/10.1116/1.583923
A metal liftoff process facilitated by the use of contrast enhanced photolithography
J. Vac. Sci. Technol. B 5, 449–453 (1987)
https://doi.org/10.1116/1.583924
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Heating of photocathode via field emission and radiofrequency pulsed heating: Implication toward breakdown
Ryo Shinohara, Soumendu Bagchi, et al.
Vertical silicon nanowedge formation by repetitive dry and wet anisotropic etching combined with 3D self-aligned sidewall nanopatterning
Yasser Pordeli, Céline Steenge, et al.