Skip Nav Destination
Issues
July 1986
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
The thermal and ion‐assisted reactions of GaAs(100) with molecular chlorine
J. Vac. Sci. Technol. B 4, 794–805 (1986)
https://doi.org/10.1116/1.583558
Si surface study after Ar ion‐assisted Cl2 etching
J. Vac. Sci. Technol. B 4, 806–811 (1986)
https://doi.org/10.1116/1.583516
Near surface contamination of silicon during reactive ion beam etching with chlorine
J. Vac. Sci. Technol. B 4, 812–817 (1986)
https://doi.org/10.1116/1.583517
SiO2 planarization technology with biasing and electron cyclotron resonance plasma deposition for submicron interconnections
J. Vac. Sci. Technol. B 4, 818–821 (1986)
https://doi.org/10.1116/1.583518
The residue phenomenon in the anisotropic dry etching of conductive films deposited on topographic steps
J. Vac. Sci. Technol. B 4, 822–828 (1986)
https://doi.org/10.1116/1.583519
Geometrical design of an alignment mark for maskless ion implantation in GaAs
J. Vac. Sci. Technol. B 4, 829–832 (1986)
https://doi.org/10.1116/1.583520
A new metallization technique for very large scale integrated structures: Experiments and computer simulation
J. Vac. Sci. Technol. B 4, 833–836 (1986)
https://doi.org/10.1116/1.583521
Method for measuring contact resistance immediately after metal deposition
J. Vac. Sci. Technol. B 4, 837–840 (1986)
https://doi.org/10.1116/1.583522
High performance very large scale integrated photomask with a silicide film
J. Vac. Sci. Technol. B 4, 841–844 (1986)
https://doi.org/10.1116/1.583523
Lithographic approach for 100 nm fabrication by focused ion beam
J. Vac. Sci. Technol. B 4, 845–849 (1986)
https://doi.org/10.1116/1.583524
Lithographic fabrication of transmission electron microscopy cross sections in III–V materials
J. Vac. Sci. Technol. B 4, 850–852 (1986)
https://doi.org/10.1116/1.583525
GaAs/GaAlAs device structures prepared by molecular beam epitaxy using indium‐free mounting techniques
J. Vac. Sci. Technol. B 4, 853–855 (1986)
https://doi.org/10.1116/1.583526
Summary Abstract: Kinetic processes in molecular beam epitaxy growth of III–V materials
J. Vac. Sci. Technol. B 4, 867–869 (1986)
https://doi.org/10.1116/1.583527
Nucleation and growth of GaAs on Ge and the structure of antiphase boundaries
J. Vac. Sci. Technol. B 4, 874–877 (1986)
https://doi.org/10.1116/1.583529
Summary Abstract: The Ge/Sn system: Complex growth of a IV/IV heterostructure
J. Vac. Sci. Technol. B 4, 888–889 (1986)
https://doi.org/10.1116/1.583532
Study of heteroepitaxial interfaces by atomic resolution electron microscopy
N. Otsuka; C. Choi; L. A. Kolodziejski; R. L. Gunshor; R. Fischer; C. K. Peng; H. Morkoç; Y. Nakamura; S. Nagakura
J. Vac. Sci. Technol. B 4, 896–899 (1986)
https://doi.org/10.1116/1.583534
Microstructure studies of AuNiGe Ohmic contacts to n‐type GaAs
J. Vac. Sci. Technol. B 4, 903–911 (1986)
https://doi.org/10.1116/1.583535
Schottky and Ohmic Au contacts on GaAs: Microscopic and electrical investigation
J. Vac. Sci. Technol. B 4, 912–918 (1986)
https://doi.org/10.1116/1.583536
Fermi level pinning and chemical interactions at metal–InxGa1−xAs(100) interfaces
L. J. Brillson; M. L. Slade; R. E. Viturro; M. K. Kelly; N. Tache; G. Margaritondo; J. M. Woodall; P. D. Kirchner; G. D. Pettit; S. L. Wright
J. Vac. Sci. Technol. B 4, 919–923 (1986)
https://doi.org/10.1116/1.583537
Transition metals on GaAs(110): A case for extrinsic surface states
J. Vac. Sci. Technol. B 4, 924–930 (1986)
https://doi.org/10.1116/1.583493
On the Fermi level pinning behavior of metal/III–V semiconductor interfaces
J. Vac. Sci. Technol. B 4, 931–938 (1986)
https://doi.org/10.1116/1.583494
Al on GaAs(110) revisited: Kinetic considerations
J. Vac. Sci. Technol. B 4, 939–942 (1986)
https://doi.org/10.1116/1.583495
Reflection high‐energy electron diffraction study of the growth of In on GaAs(110) at different temperatures
J. Vac. Sci. Technol. B 4, 943–954 (1986)
https://doi.org/10.1116/1.583496
Chemical reaction at the In on GaAs(110) interface
J. Vac. Sci. Technol. B 4, 955–958 (1986)
https://doi.org/10.1116/1.583497
Photoemission study of the reactive Pd/InP(110) interface
J. Vac. Sci. Technol. B 4, 959–965 (1986)
https://doi.org/10.1116/1.583498
The interaction of Al, Mn, and Ag with clean and oxidized GaAs and InP(110) surfaces
J. Vac. Sci. Technol. B 4, 966–973 (1986)
https://doi.org/10.1116/1.583499
Acceptor‐like electron traps control effective barrier for ultrahigh vacuum‐cleaved and laser‐annealed Al/InP
J. Vac. Sci. Technol. B 4, 974–979 (1986)
https://doi.org/10.1116/1.583500
Role of Hg bonding in metal/Hg1−xCdxTe interface formation
J. Vac. Sci. Technol. B 4, 980–985 (1986)
https://doi.org/10.1116/1.583501
Summary Abstract: A photocurrent spectroscopy study of GaAs/AlxGa1−xAs quantum wells
J. Vac. Sci. Technol. B 4, 986–987 (1986)
https://doi.org/10.1116/1.583502
Current transport mechanisms in GaAs/AlAs tunnel structures grown by metal–organic chemical vapor deposition
J. Vac. Sci. Technol. B 4, 988–995 (1986)
https://doi.org/10.1116/1.583503
Effects of strain‐induced electric fields on the electronic structure of [111] growth axis semiconductor superlattices
J. Vac. Sci. Technol. B 4, 996–999 (1986)
https://doi.org/10.1116/1.583504
Summary Abstract: Strain‐induced confined electron states in Si/SixGe1−x superlattices
J. Vac. Sci. Technol. B 4, 1000–1001 (1986)
https://doi.org/10.1116/1.583568
Electronic and optical properties of strained‐layer superlattices made of semiconductor alloys
J. Vac. Sci. Technol. B 4, 1002–1005 (1986)
https://doi.org/10.1116/1.583569
Photoconductivity of confined donors in Al0.3Ga0.7As/GaAs quantum wells
J. Vac. Sci. Technol. B 4, 1011–1013 (1986)
https://doi.org/10.1116/1.583571
Surface and interface optical phonons of a GaAs–AlGaAs superlattice measured by high resolution electron energy loss spectroscopy
J. Vac. Sci. Technol. B 4, 1028–1032 (1986)
https://doi.org/10.1116/1.583574
Influence of heterointerfaces on optical properties of CdTe/(Cd,Mn)Te and ZnSe/(Zn,Mn)Se superlattices
J. Vac. Sci. Technol. B 4, 1033–1036 (1986)
https://doi.org/10.1116/1.583575
Optical evidence of staggered band alignments in (Al,Ga)As/AlAs multi‐quantum‐well structures
J. Vac. Sci. Technol. B 4, 1037–1040 (1986)
https://doi.org/10.1116/1.583576
Summary Abstract: Light scattering determination of band offsets in semiconductor quantum wells
J. Vac. Sci. Technol. B 4, 1041–1042 (1986)
https://doi.org/10.1116/1.583577
Pressure dependence of GaAs/AlxGa1−xAs quantum‐well bound states: The determination of valence‐band offsets
J. Vac. Sci. Technol. B 4, 1043–1050 (1986)
https://doi.org/10.1116/1.583578
Two‐level model of heterojunction band offsets
J. Vac. Sci. Technol. B 4, 1051–1054 (1986)
https://doi.org/10.1116/1.583579
Theoretical calculations of semiconductor heterojunction discontinuities
J. Vac. Sci. Technol. B 4, 1055–1059 (1986)
https://doi.org/10.1116/1.583580
GaAs–Ge heterojunction interfaces: Cyclical behavior of band discontinuities
J. Vac. Sci. Technol. B 4, 1060–1063 (1986)
https://doi.org/10.1116/1.583541
Summary Abstract: Band discontinuities at InAsSb/GaSb heterojunctions
J. Vac. Sci. Technol. B 4, 1064–1065 (1986)
https://doi.org/10.1116/1.583542
Summary Abstract: Failure of the common anion rule for lattice‐matched heterojunctions
J. Vac. Sci. Technol. B 4, 1066–1067 (1986)
https://doi.org/10.1116/1.583543
Tight‐binding theory of heterojunction band lineups and interface dipoles
J. Vac. Sci. Technol. B 4, 1068–1073 (1986)
https://doi.org/10.1116/1.583544
On the stability and structure of 5×5 and 7×7 reconstruction of the (111) surface of Si and Ge
J. Vac. Sci. Technol. B 4, 1074–1078 (1986)
https://doi.org/10.1116/1.583545
Total‐energy calculations on the Takayanagi model for the Si(111) 7×7 surface
J. Vac. Sci. Technol. B 4, 1079–1082 (1986)
https://doi.org/10.1116/1.583546
Summary Abstract: Atomic geometry and electronic structure of the (311)‐(1×1) surfaces of GaAs
J. Vac. Sci. Technol. B 4, 1083–1084 (1986)
https://doi.org/10.1116/1.583547
Virtual gap states and Fermi level pinning by adsorbates at semiconductor surfaces
J. Vac. Sci. Technol. B 4, 1085–1090 (1986)
https://doi.org/10.1116/1.583548
Oxidation of InAs(110) and correlated changes of electronic surface properties
J. Vac. Sci. Technol. B 4, 1095–1099 (1986)
https://doi.org/10.1116/1.583538
Summary Abstract: Oxygen on GaAs(110): New results confirming the two‐step uptake‐model
J. Vac. Sci. Technol. B 4, 1100–1101 (1986)
https://doi.org/10.1116/1.583539
Oxygen chemisorption on GaAs(110): Surface or subsurface growth?
J. Vac. Sci. Technol. B 4, 1102–1108 (1986)
https://doi.org/10.1116/1.583550
O 1s studies of the oxidation of InP(110) and GaAs(110) surfaces
J. Vac. Sci. Technol. B 4, 1109–1114 (1986)
https://doi.org/10.1116/1.583551
Summary Abstract: Unpinned (100) GaAs surfaces in air using photochemistry
J. Vac. Sci. Technol. B 4, 1115–1116 (1986)
https://doi.org/10.1116/1.583540
Electronic structure of molecular beam epitaxy grown CaF2 on Si(111)
J. Vac. Sci. Technol. B 4, 1117–1120 (1986)
https://doi.org/10.1116/1.583552
Summary Abstract: High resolution electron microscopy of CaF2/silicon interfaces
J. Vac. Sci. Technol. B 4, 1121–1122 (1986)
https://doi.org/10.1116/1.583553
Initial formation of the interface between a polar insulator and a nonpolar semiconductor: CaF2 on Si(111)
J. Vac. Sci. Technol. B 4, 1123–1127 (1986)
https://doi.org/10.1116/1.583554
Summary Abstract: Passivation of InP by plasma deposited phosphorus: Effects of surface treatment
J. Vac. Sci. Technol. B 4, 1128–1129 (1986)
https://doi.org/10.1116/1.583555
Unified disorder induced gap state model for insulator–semiconductor and metal–semiconductor interfaces
J. Vac. Sci. Technol. B 4, 1130–1138 (1986)
https://doi.org/10.1116/1.583556
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Machine learning driven measurement of high-aspect-ratio nanostructures using Mueller matrix spectroscopic ellipsometry
Shiva Mudide, Nick Keller, et al.