Skip Nav Destination
Issues
January 1986
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Anisotropic etching of silicon using an SF6/Ar microwave multipolar plasma
J. Vac. Sci. Technol. B 4, 1–5 (1986)
https://doi.org/10.1116/1.583437
Linewidth control with masked ion beam lithography using stencil masks
J. Vac. Sci. Technol. B 4, 10–14 (1986)
https://doi.org/10.1116/1.583358
The mechanism of overhang formation in diazide/novolak photoresist film by chlorobenzene soak process
J. Vac. Sci. Technol. B 4, 15–21 (1986)
https://doi.org/10.1116/1.583370
Epitaxial growth from organometallic sources in high vacuum
J. Vac. Sci. Technol. B 4, 22–29 (1986)
https://doi.org/10.1116/1.583445
Surface morphologies of GaAs layers grown by arsenic‐pressure‐controlled molecular beam epitaxy
J. Vac. Sci. Technol. B 4, 30–36 (1986)
https://doi.org/10.1116/1.583319
Measurement of the conduction band discontinuities of InGaAsP/InP heterojunctions using capacitance–voltage analysis
J. Vac. Sci. Technol. B 4, 37–44 (1986)
https://doi.org/10.1116/1.583336
Erratum: Heterojunction band discontinuity at the Si–Ge interface [J. Vac. Sci. Technol. B 3, 1252 (1985)]
J. Vac. Sci. Technol. B 4, 45 (1986)
https://doi.org/10.1116/1.583350
Artificial neural networks for computing
J. Vac. Sci. Technol. B 4, 61–63 (1986)
https://doi.org/10.1116/1.583351
Development of nanometric electron‐beam lithography system (JBX‐5D II)
J. Vac. Sci. Technol. B 4, 64–67 (1986)
https://doi.org/10.1116/1.583352
EBS‐5: A vector scan electron‐beam lithography system for research applications
J. Vac. Sci. Technol. B 4, 68–72 (1986)
https://doi.org/10.1116/1.583353
Experimental results from fast electron pattern generator: A variable shaped beam machine
J. Vac. Sci. Technol. B 4, 73–77 (1986)
https://doi.org/10.1116/1.583397
Fast electron pattern generator–high resolution: A variable shaped beam system for submicron writing
J. Vac. Sci. Technol. B 4, 78–82 (1986)
https://doi.org/10.1116/1.583398
Repair techniques for silicon transmission masks used for submicron lithography
J. Vac. Sci. Technol. B 4, 94–99 (1986)
https://doi.org/10.1116/1.583402
Design, technology, and behavior of a silicon avalanche cathode
J. Vac. Sci. Technol. B 4, 105–107 (1986)
https://doi.org/10.1116/1.583356
The effect of oxygen pressure on volatility and morphology of LaB6 single crystal cathodes
J. Vac. Sci. Technol. B 4, 112–115 (1986)
https://doi.org/10.1116/1.583359
High resolution structuring of emitter tips for the gaseous field ionization source
J. Vac. Sci. Technol. B 4, 120–125 (1986)
https://doi.org/10.1116/1.583361
The performance of a microwave ion source immersed in a multicusp static magnetic field
J. Vac. Sci. Technol. B 4, 126–130 (1986)
https://doi.org/10.1116/1.583362
Current density distribution in a chromatically limited electron microprobe
J. Vac. Sci. Technol. B 4, 131–134 (1986)
https://doi.org/10.1116/1.583363
Control electronics for a new submicron ion probe system
J. Vac. Sci. Technol. B 4, 143–147 (1986)
https://doi.org/10.1116/1.583366
Proximity effect correction calculations by the integral equation approximate solution method
J. Vac. Sci. Technol. B 4, 159–163 (1986)
https://doi.org/10.1116/1.583369
Proximity effect reduction in high voltage electron‐beam lithography by bias exposure method
J. Vac. Sci. Technol. B 4, 164–167 (1986)
https://doi.org/10.1116/1.583371
Transform based proximity corrections: Experimental results and comparisons
J. Vac. Sci. Technol. B 4, 168–175 (1986)
https://doi.org/10.1116/1.583372
The focused ion beam as an integrated circuit restructuring tool
J. Melngailis; C. R. Musil; E. H. Stevens; M. Utlaut; E. M. Kellogg; R. T. Post; M. W. Geis; R. W. Mountain
J. Vac. Sci. Technol. B 4, 176–180 (1986)
https://doi.org/10.1116/1.583373
Maskless ion beam writing of precise doping patterns with Be and Si for molecular beam epitaxially grown multilayer GaAs
J. Vac. Sci. Technol. B 4, 189–193 (1986)
https://doi.org/10.1116/1.583435
Ion projection lithography machine IPLM‐01: A new tool for sub‐0.5‐micron modification of materials
J. Vac. Sci. Technol. B 4, 194–200 (1986)
https://doi.org/10.1116/1.583436
Unique resist profiles with Be and Si focused ion beam lithography
J. Vac. Sci. Technol. B 4, 205–208 (1986)
https://doi.org/10.1116/1.583439
The effects of local electric fields and specimen geometry on voltage contrast in the scanning electron microscope
J. Vac. Sci. Technol. B 4, 209–212 (1986)
https://doi.org/10.1116/1.583440
Shot noise limits to measurement accuracy and bandwidth in electron‐beam testing
J. Vac. Sci. Technol. B 4, 213–216 (1986)
https://doi.org/10.1116/1.583441
Magnetic field extraction of secondary electrons for accurate integrated circuit voltage measurement
J. Vac. Sci. Technol. B 4, 217–220 (1986)
https://doi.org/10.1116/1.583442
Low pressure chemical vapor deposition boro‐hydro‐nitride films and their use in x‐ray masks
J. Vac. Sci. Technol. B 4, 235–239 (1986)
https://doi.org/10.1116/1.583447
Resolution limits in x‐ray lithography calculated by means of x‐ray lithography simulator XMAS
J. Vac. Sci. Technol. B 4, 248–252 (1986)
https://doi.org/10.1116/1.583450
Sub‐100‐nm channel‐length transistors fabricated using x‐ray lithography
J. Vac. Sci. Technol. B 4, 253–255 (1986)
https://doi.org/10.1116/1.583451
Dry developed negative resist in synchrotron radiation lithography
J. Vac. Sci. Technol. B 4, 256–260 (1986)
https://doi.org/10.1116/1.583452
Analysis of pattern dimension accuracy in electron‐beam lithography
J. Vac. Sci. Technol. B 4, 265–268 (1986)
https://doi.org/10.1116/1.583310
Applying optical methods to aid in linewidth control for the development of sub‐half‐micron geometries
J. Vac. Sci. Technol. B 4, 269–272 (1986)
https://doi.org/10.1116/1.583311
High speed flat guide ceramic stage for electron‐beam lithography system
J. Vac. Sci. Technol. B 4, 280–284 (1986)
https://doi.org/10.1116/1.583313
An optical alignment microscope for x‐ray lithography
J. Vac. Sci. Technol. B 4, 285–289 (1986)
https://doi.org/10.1116/1.583314
Fabrication of bipolar transistors by maskless ion implantation
J. Vac. Sci. Technol. B 4, 290–294 (1986)
https://doi.org/10.1116/1.583315
Low temperature oxidation of silicon using a microwave plasma disk source
J. Vac. Sci. Technol. B 4, 295–298 (1986)
https://doi.org/10.1116/1.583316
New selective deposition technology by electron‐beam induced surface reaction
J. Vac. Sci. Technol. B 4, 299–304 (1986)
https://doi.org/10.1116/1.583317
Excimer‐laser etching of diamond and hard carbon films by direct writing and optical projection
J. Vac. Sci. Technol. B 4, 310–314 (1986)
https://doi.org/10.1116/1.583320
Oxygen ion etching mechanism investigation by surface enhanced Raman scattering
J. Vac. Sci. Technol. B 4, 318–321 (1986)
https://doi.org/10.1116/1.583322
Electronic and chemical analysis of fluoride interface structures at subnanometer spatial resolution
J. Vac. Sci. Technol. B 4, 326–332 (1986)
https://doi.org/10.1116/1.583324
Characteristics of maskless ion beam assisted etching of silicon using focused ion beams
Yukinori Ochiai; Kazuhiko Shihoyama; Takao Shiokawa; Koichi Toyoda; Akio Masuyama; Kenji Gamo; Susumu Namba
J. Vac. Sci. Technol. B 4, 333–336 (1986)
https://doi.org/10.1116/1.583325
Anisotropic etching of Al by a directed Cl2 flux
J. Vac. Sci. Technol. B 4, 337–340 (1986)
https://doi.org/10.1116/1.583326
Reactive ion etching of SiC thin films using fluorinated gases
J. Vac. Sci. Technol. B 4, 349–354 (1986)
https://doi.org/10.1116/1.583329
Spatial quantization in GaAs–AlGaAs multiple quantum dots
J. Vac. Sci. Technol. B 4, 358–360 (1986)
https://doi.org/10.1116/1.583331
Nanostructure fabrication in metals, insulators, and semiconductors using self‐developing metal inorganic resist
J. Vac. Sci. Technol. B 4, 361–364 (1986)
https://doi.org/10.1116/1.583332
Comparison of NPN transistors fabricated with broad beam and spatial profiling using focused beam ion implantation
J. Vac. Sci. Technol. B 4, 375–379 (1986)
https://doi.org/10.1116/1.583335
Nanometer metal‐oxide‐semiconductor field‐effect transistors: A flexible tool for studying inversion layer physics
J. Vac. Sci. Technol. B 4, 380–382 (1986)
https://doi.org/10.1116/1.583337
Observation of h/e Aharonov–Bohm interference effects in submicron diameter, normal metal rings
J. Vac. Sci. Technol. B 4, 383–385 (1986)
https://doi.org/10.1116/1.583338
A novel negative electron‐beam resist with high resolution and high dry‐etching durability: Chloromethylated poly‐2‐isopropenylnaphthalene
J. Vac. Sci. Technol. B 4, 386–389 (1986)
https://doi.org/10.1116/1.583339
Polyimide as a negative electron resist and its application in crossovers and metal on polymer mask fabrication
J. Vac. Sci. Technol. B 4, 390–393 (1986)
https://doi.org/10.1116/1.583340
Electron‐beam investigation and use of Ge–Se inorganic resist
J. Vac. Sci. Technol. B 4, 398–402 (1986)
https://doi.org/10.1116/1.583342
Optimization of solvent development in radiation induced graft lithography of poly(methylmethacrylate)
J. Vac. Sci. Technol. B 4, 403–408 (1986)
https://doi.org/10.1116/1.583343
New trilevel and bilevel resist systems using silyl ethers of novolak and low molecular weight resist
Ryuji Kawazu; Yoshio Yamashita; Toshio Ito; Kazutami Kawamura; Seigo Ohno; Takateru Asano; Kenji Kobayasi; Gentaro Nagamatsu
J. Vac. Sci. Technol. B 4, 409–413 (1986)
https://doi.org/10.1116/1.583344
Methacrylated silicone‐based negative photoresist for high resolution bilayer resist systems
J. Vac. Sci. Technol. B 4, 414–417 (1986)
https://doi.org/10.1116/1.583345
Silver diffusion in Ag2Se/GeSe2 inorganic resist system
J. Vac. Sci. Technol. B 4, 418–421 (1986)
https://doi.org/10.1116/1.583346
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Heating of photocathode via field emission and radiofrequency pulsed heating: Implication toward breakdown
Ryo Shinohara, Soumendu Bagchi, et al.