Skip Nav Destination
Issues
November 2000
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
In this Issue
REGULAR ARTICLES
Growth of low-defect density on GaAs by molecular beam epitaxy
J. Vac. Sci. Technol. B 18, 2611–2614 (2000)
https://doi.org/10.1116/1.1322040
Investigation of mesa-sidewall effects on direct current and radio frequency characteristics of pseudomorphic high electron mobility transistors
J. Vac. Sci. Technol. B 18, 2615–2619 (2000)
https://doi.org/10.1116/1.1322047
Diode structures based on for optoelectronic applications in the near-ultraviolet range of the spectrum
J. Vac. Sci. Technol. B 18, 2620–2623 (2000)
https://doi.org/10.1116/1.1326943
Effect of growth interruption and the introduction of on the growth of InGaN/GaN multiple quantum wells
J. Vac. Sci. Technol. B 18, 2631–2634 (2000)
https://doi.org/10.1116/1.1327298
Site control of InAs quantum dots on GaAs surfaces patterned by in situ electron-beam lithography
J. Vac. Sci. Technol. B 18, 2635–2639 (2000)
https://doi.org/10.1116/1.1322039
Fabrication technology of a Si nanowire memory transistor using an inorganic electron beam resist process
Toshiyuki Tsutsumi; Kenichi Ishii; Hiroshi Hiroshima; Sukti Hazra; Mitsuyuki Yamanaka; Isao Sakata; Hirohisa Taguchi; Eiichi Suzuki; Kazutaka Tomizawa
J. Vac. Sci. Technol. B 18, 2640–2645 (2000)
https://doi.org/10.1116/1.1314373
Deposition of Fe clusters on Si surfaces
J. Vac. Sci. Technol. B 18, 2646–2649 (2000)
https://doi.org/10.1116/1.1320808
Electrical properties of self-organized nanostructures of alkanethiol-encapsulated gold particles
J. Vac. Sci. Technol. B 18, 2653–2657 (2000)
https://doi.org/10.1116/1.1318190
Atomic force microscopy of reaction of ammonia gas with crystalline substituted benzoic acid
J. Vac. Sci. Technol. B 18, 2658–2663 (2000)
https://doi.org/10.1116/1.1314372
Effect of photoenhanced minority carriers in metal-oxide-semiconductor capacitor studied by scanning capacitance microscopy
J. Vac. Sci. Technol. B 18, 2664–2668 (2000)
https://doi.org/10.1116/1.1326947
Integrated atomic force microscopy array probe with metal–oxide–semiconductor field effect transistor stress sensor, thermal bimorph actuator, and on-chip complementary metal–oxide–semiconductor electronics
T. Akiyama; U. Staufer; N. F. de Rooij; D. Lange; C. Hagleitner; O. Brand; H. Baltes; A. Tonin; H. R. Hidber
J. Vac. Sci. Technol. B 18, 2669–2675 (2000)
https://doi.org/10.1116/1.1327299
X-ray source combined ultrahigh-vacuum scanning tunneling microscopy for elemental analysis
J. Vac. Sci. Technol. B 18, 2676–2680 (2000)
https://doi.org/10.1116/1.1318189
Dual tunneling-unit scanning tunneling microscope for practical length measurement based on reference scales
J. Vac. Sci. Technol. B 18, 2684–2687 (2000)
https://doi.org/10.1116/1.1319696
Effect of metal–insulator–semiconductor structure derived space charge field on the tip vibration signal in electrostatic force microscopy
Seungbum Hong; Jungwon Woo; Hyunjung Shin; Eunah Kim; Keun-Ho Kim; Jong Up Jeon; Y. Eugene Pak; Kwangsoo No
J. Vac. Sci. Technol. B 18, 2688–2691 (2000)
https://doi.org/10.1116/1.1323968
Wide dynamic range silicon diaphragm vacuum sensor by electrostatic servo system
J. Vac. Sci. Technol. B 18, 2692–2697 (2000)
https://doi.org/10.1116/1.1320807
Field emission properties of nanocomposite carbon nitride films
J. Vac. Sci. Technol. B 18, 2698–2703 (2000)
https://doi.org/10.1116/1.1322043
Study of the emission performance of carbon nanotubes
J. Vac. Sci. Technol. B 18, 2704–2709 (2000)
https://doi.org/10.1116/1.1319692
Influence of diamond film thickness on field emission characteristics
J. Vac. Sci. Technol. B 18, 2710–2713 (2000)
https://doi.org/10.1116/1.1326945
Characterization of the surface morphology and electronic properties of microwave enhanced chemical vapor deposited diamond films
J. Vac. Sci. Technol. B 18, 2714–2721 (2000)
https://doi.org/10.1116/1.1326946
Enhancement in field emission of silicon microtips by bias-assisted carburization
J. Vac. Sci. Technol. B 18, 2722–2729 (2000)
https://doi.org/10.1116/1.1320809
Polysubstituted derivatives of triphenylene as high resolution electron beam resists for nanolithography
J. Vac. Sci. Technol. B 18, 2730–2736 (2000)
https://doi.org/10.1116/1.1322045
Comparative study of sputtered and spin-coatable aluminum oxide electron beam resists
J. Vac. Sci. Technol. B 18, 2737–2744 (2000)
https://doi.org/10.1116/1.1323970
How to make polyvinylphenol inhibitable by diazonaphthoquinone sulfonates
J. Vac. Sci. Technol. B 18, 2745–2749 (2000)
https://doi.org/10.1116/1.1322041
Effects of fluorocarbon polymer deposition on the selective etching of in high density plasma
J. Vac. Sci. Technol. B 18, 2763–2768 (2000)
https://doi.org/10.1116/1.1322046
Direct pattern etching for micromachining applications without the use of a resist mask
J. Vac. Sci. Technol. B 18, 2769–2773 (2000)
https://doi.org/10.1116/1.1322044
Electron population above 13.5 eV in ultrahigh frequency and inductively coupled plasmas through and gas mixtures
J. Vac. Sci. Technol. B 18, 2774–2779 (2000)
https://doi.org/10.1116/1.1316104
Study of grass formation in GaAs backside via etching using inductively coupled plasma system
J. Vac. Sci. Technol. B 18, 2780–2784 (2000)
https://doi.org/10.1116/1.1320803
Two-channel spectroscopic reflectometry for in situ monitoring of blanket and patterned structures during reactive ion etching
J. Vac. Sci. Technol. B 18, 2785–2793 (2000)
https://doi.org/10.1116/1.1327301
Development and qualification of a vacuum pumping system for metalorganic vapor phase epitaxy copper precursors
J. Vac. Sci. Technol. B 18, 2794–2798 (2000)
https://doi.org/10.1116/1.1320805
Oxygen plasma induced degradation in InGaAs/InP heterostructures
J. Vac. Sci. Technol. B 18, 2799–2802 (2000)
https://doi.org/10.1116/1.1320801
Characterization of showerhead performance at low pressure
J. Vac. Sci. Technol. B 18, 2808–2813 (2000)
https://doi.org/10.1116/1.1322048
Thermal stability and adhesion improvement of Ag deposited on by oxygen plasma treatment
J. Vac. Sci. Technol. B 18, 2814–2819 (2000)
https://doi.org/10.1116/1.1327300
Thermal modeling of a polysilicon-metal test structure used for thermally induced voltage alteration characterization
J. Vac. Sci. Technol. B 18, 2820–2825 (2000)
https://doi.org/10.1116/1.1327297
Influence of underlying interlevel dielectric films on extrusion formation in aluminum interconnects
Fen Chen; Baozhen Li; Timothy D. Sullivan; Clara L. Gonzalez; Christopher D. Muzzy; H. K. Lee; Mark D. Levy; Michael W. Dashiell; James Kolodzey
J. Vac. Sci. Technol. B 18, 2826–2834 (2000)
https://doi.org/10.1116/1.1319691
Characterization of additive systems for damascene Cu electroplating by the superfilling profile monitor
Shao-Yu Chiu; Jia-Min Shieh; Shih-Chieh Chang; Kun-Cheng Lin; Bau-Tong Dai; Chia-Fu Chen; Ming-Shiann Feng
J. Vac. Sci. Technol. B 18, 2835–2841 (2000)
https://doi.org/10.1116/1.1322042
Effect of various sputtering parameters on Ta phase formation using an I-Optimal experimental design
J. Vac. Sci. Technol. B 18, 2842–2847 (2000)
https://doi.org/10.1116/1.1319701
Electrical characteristics of metal–ferroelectric –insulator structure for nonvolatile memory applications
J. Vac. Sci. Technol. B 18, 2848–2850 (2000)
https://doi.org/10.1116/1.1319698
Electronic structure and mechanical properties of hard coatings from the chromium–tungsten nitride system
J. Vac. Sci. Technol. B 18, 2851–2856 (2000)
https://doi.org/10.1116/1.1320806
BRIEF REPORTS AND COMMENTS
Electron-beam direct writing using RD2000N for fabrication of nanodevices
J. Vac. Sci. Technol. B 18, 2857–2861 (2000)
https://doi.org/10.1116/1.1323969
RAPID COMMUNICATIONS
PAPERS FROM THE 44TH INTERNATIONAL CONFERENCE ON ELECTRON, ION, AND PHOTON BEAM TECHNOLOGY AND NANOFABRICATION
OPTICAL LITHOGRAPHY
Implementing advanced lithography technology: A 100 MHz, 1 V digital signal processor fabricated with phase shifted gates
G. P. Watson; I. C. Kizilyalli; O. Nalamasu; R. A. Cirelli; M. Miller; Y. Wang; B. Pati; J. Radosevich; R. Kohler; R. Freyman; F. Klemens; W. Mansfield; H. Vaidya; A. Timko; L. Trimble; J. Frackoviak
J. Vac. Sci. Technol. B 18, 2877–2880 (2000)
https://doi.org/10.1116/1.1328056
Lithographic patterning and confocal imaging with zone plates
J. Vac. Sci. Technol. B 18, 2881–2885 (2000)
https://doi.org/10.1116/1.1321293
Sub-100 nm silicon on insulator complimentary metal–oxide semiconductor transistors by deep ultraviolet optical lithography
M. Fritze; J. Burns; P. W. Wyatt; C. K. Chen; P. Gouker; C. L. Chen; C. Keast; D. Astolfi; D. Yost; D. Preble; A. Curtis; P. Davis; S. Cann; S. Deneault; H. Y. Liu
J. Vac. Sci. Technol. B 18, 2886–2890 (2000)
https://doi.org/10.1116/1.1314387
Defect formation and structural alternation in modified glasses by irradiation with laser or ArF excimer laser
J. Vac. Sci. Technol. B 18, 2891–2895 (2000)
https://doi.org/10.1116/1.1328055
Shape engineering: A novel optical proximity correction technique for attenuated phase-shift mask
J. Vac. Sci. Technol. B 18, 2896–2899 (2000)
https://doi.org/10.1116/1.1313570
Analytic study of gratings patterned by evanescent near field optical lithography
J. Vac. Sci. Technol. B 18, 2900–2904 (2000)
https://doi.org/10.1116/1.1319837
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY
Development of the large field extreme ultraviolet lithography camera
T. Watanabe; H. Kinoshita; H. Nii; Y. Li; K. Hamamoto; T. Oshino; K. Sugisaki; K. Murakami; S. Irie; S. Shirayone; Y. Gomei; S. Okazaki
J. Vac. Sci. Technol. B 18, 2905–2910 (2000)
https://doi.org/10.1116/1.1319712
At-wavelength extreme ultraviolet lithography mask inspection using a Mirau interferometric microscope
J. Vac. Sci. Technol. B 18, 2916–2920 (2000)
https://doi.org/10.1116/1.1319702
Reticle’s contribution to critical dimension control and overlay in extreme-ultraviolet lithography
J. Vac. Sci. Technol. B 18, 2921–2925 (2000)
https://doi.org/10.1116/1.1321276
Extreme ultraviolet mask defect simulation: Low-profile defects
J. Vac. Sci. Technol. B 18, 2926–2929 (2000)
https://doi.org/10.1116/1.1324616
Characterization of extreme ultraviolet lithography mask defects from extreme ultraviolet far-field scattering patterns
J. Vac. Sci. Technol. B 18, 2930–2934 (2000)
https://doi.org/10.1116/1.1319843
Extreme ultraviolet holographic microscopy and its application to extreme ultraviolet mask-blank defect characterization
J. Vac. Sci. Technol. B 18, 2935–2938 (2000)
https://doi.org/10.1116/1.1314382
Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four-mirror optical system
J. Vac. Sci. Technol. B 18, 2939–2943 (2000)
https://doi.org/10.1116/1.1321290
Effects of smoothing on defect printability at extreme ultraviolet wavelengths
G. F. Cardinale; A. K. Ray-Chaudhuri; A. Fisher; P. S. J. Mangat; J. Wasson; P. B. Mirkarimi; E. Gullikson
J. Vac. Sci. Technol. B 18, 2944–2949 (2000)
https://doi.org/10.1116/1.1324637
X-RAY LITHOGRAPHY AND MICROSCOPY
Proposal for a 50 nm proximity x-ray lithography system and extension to 35 nm by resist material selection
J. Vac. Sci. Technol. B 18, 2950–2954 (2000)
https://doi.org/10.1116/1.1324644
Technology and performance of the Canon XRA-1000 production x-ray stepper
J. Vac. Sci. Technol. B 18, 2955–2960 (2000)
https://doi.org/10.1116/1.1324619
Overlay evaluation of proximity x-ray lithography in 100 nm device fabrication
H. Aoyama; T. Taguchi; Y. Matsui; M. Fukuda; K. Deguchi; H. Morita; M. Oda; T. Matsuda; F. Kumasaka; Y. Iba; K. Horiuchi
J. Vac. Sci. Technol. B 18, 2961–2965 (2000)
https://doi.org/10.1116/1.1319686
Membrane-mask distortion correction: Analytical and experimental results
J. Vac. Sci. Technol. B 18, 2966–2969 (2000)
https://doi.org/10.1116/1.1314368
Nanofabrication and diffractive optics for high-resolution x-ray applications
Erik H. Anderson; Deirdre L. Olynick; Bruce Harteneck; Eugene Veklerov; Gregory Denbeaux; Weilun Chao; Angelic Lucero; Lewis Johnson; David Attwood
J. Vac. Sci. Technol. B 18, 2970–2975 (2000)
https://doi.org/10.1116/1.1321282
Generation of arbitrary three dimensional surfaces by x-ray lithography
J. Vac. Sci. Technol. B 18, 2976–2980 (2000)
https://doi.org/10.1116/1.1321272
Performance of a compact beamline with high brightness for x-ray lithography
Sayumi Hirose; Tsutomu Miyatake; Xuan Li; Eijiro Toyota; Masaoki Hirose; Kiyoshi Fujii; Katsumi Suzuki
J. Vac. Sci. Technol. B 18, 2986–2989 (2000)
https://doi.org/10.1116/1.1319832
Highly accurate x-ray masks with 100-nm-class high-density device patterns
J. Vac. Sci. Technol. B 18, 2990–2994 (2000)
https://doi.org/10.1116/1.1321763
Overlay compatibility between two synchroton radiation steppers
Makoto Fukuda; Masanori Suzuki; Tsuneyuki Haga; Hirofumi Morita; Hajime Aoyama; Souichirou Mitsui; Takao Taguchi; Yasuji Matsui
J. Vac. Sci. Technol. B 18, 2995–2998 (2000)
https://doi.org/10.1116/1.1319831
CHARGED PARTICLE AND PHOTON OPTICS
Scaled measurements of global space-charge induced image blur in electron beam projection system
J. Vac. Sci. Technol. B 18, 2999–3003 (2000)
https://doi.org/10.1116/1.1314367
Multisource optimization of a column for electron lithography
J. Vac. Sci. Technol. B 18, 3010–3016 (2000)
https://doi.org/10.1116/1.1321752
Electron optical image correction subsystem in electron beam projection lithography
J. Vac. Sci. Technol. B 18, 3017–3022 (2000)
https://doi.org/10.1116/1.1324641
Application of the generalized curvilinear variable axis lens to electron projection
J. Vac. Sci. Technol. B 18, 3029–3033 (2000)
https://doi.org/10.1116/1.1313579
Computer aided design and analysis of imaging energy filters with inhomogeneous bending magnets
J. Vac. Sci. Technol. B 18, 3034–3041 (2000)
https://doi.org/10.1116/1.1319841
Prospect for high brightness III–nitride electron emitter
J. Vac. Sci. Technol. B 18, 3042–3046 (2000)
https://doi.org/10.1116/1.1321270
Demonstration of multiblanker electron-beam technology
J. Vac. Sci. Technol. B 18, 3052–3056 (2000)
https://doi.org/10.1116/1.1321757
Optimization of microcolumn electron optics for high-current applications
M. Mankos; K. Y. Lee; L. Muray; J. Spallas; Y. Hsu; C. Stebler; W. DeVore; E. Bullock; T. H. P. Chang
J. Vac. Sci. Technol. B 18, 3057–3060 (2000)
https://doi.org/10.1116/1.1321756
ELECTRON BEAM LITHOGRAPHY
PREVAIL Alpha system: Status and design considerations
J. Vac. Sci. Technol. B 18, 3072–3078 (2000)
https://doi.org/10.1116/1.1314381
PREVAIL: Dynamic correction of aberrations
J. Vac. Sci. Technol. B 18, 3079–3083 (2000)
https://doi.org/10.1116/1.1319710
Patterning performance of EB-X3 x-ray mask writer
Shigehisa Ohki; Toshifumi Watanabe; Yuji Takeda; Tetsuo Morosawa; Kenichi Saito; Tatsuya Kunioka; Junichi Kato; Akira Shimizu; Tadahito Matsuda; Shinji Tsuboi; Hajime Aoyama; Hiroshi Watanabe; Yoshinori Nakayama
J. Vac. Sci. Technol. B 18, 3084–3088 (2000)
https://doi.org/10.1116/1.1319708
Evaluation of a 100 kV thermal field emission electron-beam nanolithography system
J. Vac. Sci. Technol. B 18, 3089–3094 (2000)
https://doi.org/10.1116/1.1319707
Calculation of surface potential and beam deflection due to charging effects in electron beam lithography
J. Vac. Sci. Technol. B 18, 3095–3098 (2000)
https://doi.org/10.1116/1.1319822
Advances in arrayed microcolumn lithography
J. Vac. Sci. Technol. B 18, 3099–3104 (2000)
https://doi.org/10.1116/1.1321760
Quantitative factor analysis of resolution limit in electron beam lithography using the edge roughness evaluation method
J. Vac. Sci. Technol. B 18, 3105–3110 (2000)
https://doi.org/10.1116/1.1319844
Grid lens approach for high effective emittance in SCALPEL®
J. Vac. Sci. Technol. B 18, 3111–3114 (2000)
https://doi.org/10.1116/1.1324643
Charge induced pattern distortion in low energy electron beam lithography
J. Vac. Sci. Technol. B 18, 3122–3125 (2000)
https://doi.org/10.1116/1.1321755
Electron optical column for a multicolumn, multibeam direct-write electron beam lithography system
J. Vac. Sci. Technol. B 18, 3126–3131 (2000)
https://doi.org/10.1116/1.1318187
Demagnifying immersion magnetic lenses used for projection electron beam lithography without crossovers
J. Vac. Sci. Technol. B 18, 3132–3137 (2000)
https://doi.org/10.1116/1.1320796
Implementation of real-time proximity effect correction in a raster shaped beam tool
J. Vac. Sci. Technol. B 18, 3138–3142 (2000)
https://doi.org/10.1116/1.1324614
Sub-0.1 μ electron-beam lithography for nanostructure development
J. Vac. Sci. Technol. B 18, 3143–3149 (2000)
https://doi.org/10.1116/1.1321278
Proximity effect correction using pattern shape modification and area density map
Kimitoshi Takahashi; Morimi Osawa; Masami Sato; Hiroshi Arimoto; Kozo Ogino; Hiromi Hoshino; Yasuhide Machida
J. Vac. Sci. Technol. B 18, 3150–3157 (2000)
https://doi.org/10.1116/1.1313576
ION BEAMS, LITHOGRAPHY, AND BEAM INDUCED PROCESSING
Carrier distribution profiles in Si-doped layers in GaAs formed by focused ion beam implantation and successive overlayer growth
J. Vac. Sci. Technol. B 18, 3158–3161 (2000)
https://doi.org/10.1116/1.1319683
Focused ion beam patterning of III–V crystals at low temperature: A method for improving the ion-induced defect localization
J. Vac. Sci. Technol. B 18, 3162–3167 (2000)
https://doi.org/10.1116/1.1328054
Focused electron beam induced deposition of gold
J. Vac. Sci. Technol. B 18, 3168–3171 (2000)
https://doi.org/10.1116/1.1319690
Pattern generators and microcolumns for ion beam lithography
J. Vac. Sci. Technol. B 18, 3172–3176 (2000)
https://doi.org/10.1116/1.1314384
Determination of resist exposure parameters in helium ion beam lithography: Absorbed energy gradient, contrast, and critical dose
J. Vac. Sci. Technol. B 18, 3177–3180 (2000)
https://doi.org/10.1116/1.1319830
Three-dimensional nanostructure fabrication by focused-ion-beam chemical vapor deposition
J. Vac. Sci. Technol. B 18, 3181–3184 (2000)
https://doi.org/10.1116/1.1319689
Optimal strategy for controlling linewidth on spherical focal surface arrays
J. Vac. Sci. Technol. B 18, 3185–3189 (2000)
https://doi.org/10.1116/1.1319842
Performance of multicusp plasma ion source for focused ion beam applications
J. Vac. Sci. Technol. B 18, 3194–3197 (2000)
https://doi.org/10.1116/1.1320797
MASKS
Fabrication of open stencil masks with asymmetric void ratio for the ion projection lithography space charge experiment
B. Volland; F. Shi; H. Heerlein; I. W. Rangelow; P. Hudek; I. Kostic; E. Cekan; H. Vonach; H. Loeschner; C. Horner; G. Stengl; H. Buschbeck; M. Zeininger; A. Bleeker; J. Benschop
J. Vac. Sci. Technol. B 18, 3202–3206 (2000)
https://doi.org/10.1116/1.1319688
Experimental evaluation of an optimized radiation cooling geometry for ion projection lithography masks
J. L. Torres; H. N. Nounu; J. R. Wasson; J. C. Wolfe; J. Lutz; E. Haugeneder; H. Löschner; G. Stengl; R. Kaesmaier
J. Vac. Sci. Technol. B 18, 3207–3209 (2000)
https://doi.org/10.1116/1.1314380
Fabrication of masks for electron-beam projection lithography
Michael Lercel; Chris Magg; Monica Barrett; Kevin Collins; Michael Trybendis; Neal Caldwell; Ray Jeffer; Lucien Bouchard
J. Vac. Sci. Technol. B 18, 3210–3215 (2000)
https://doi.org/10.1116/1.1314370
Progress in extreme ultraviolet mask repair using a focused ion beam
J. Vac. Sci. Technol. B 18, 3216–3220 (2000)
https://doi.org/10.1116/1.1319687
Mechanical analysis of the PLASMAX particle removal process for optical and next-generation lithography masks
J. Vac. Sci. Technol. B 18, 3221–3226 (2000)
https://doi.org/10.1116/1.1314369
Characterization of phase defects in phase shift masks
J. Vac. Sci. Technol. B 18, 3227–3231 (2000)
https://doi.org/10.1116/1.1321284
TaSiN thin-film pattern transfer optimization for 200 mm SCALPEL and extreme ultraviolet lithography masks
W. J. Dauksher; D. J. Resnick; S. B. Clemens; D. L. Standfast; Z. S. Masnyj; J. R. Wasson; N. M. Bergmann; S.-I. Han; P. J. S. Mangat
J. Vac. Sci. Technol. B 18, 3232–3236 (2000)
https://doi.org/10.1116/1.1313575
High-performance membrane mask for electron projection lithography
J. Vac. Sci. Technol. B 18, 3237–3241 (2000)
https://doi.org/10.1116/1.1319829
Inter- and intramembrane resist critical dimension uniformity across a SCALPEL mask
J. Vac. Sci. Technol. B 18, 3242–3247 (2000)
https://doi.org/10.1116/1.1324642
Simulating the mechanical response of electron-beam projection lithography masks
J. Vac. Sci. Technol. B 18, 3248–3253 (2000)
https://doi.org/10.1116/1.1313574
Stencil reticle repair for electron beam projection lithography
J. Vac. Sci. Technol. B 18, 3254–3258 (2000)
https://doi.org/10.1116/1.1319828
Thickness analysis of silicon membranes for stencil masks
J. Vac. Sci. Technol. B 18, 3259–3263 (2000)
https://doi.org/10.1116/1.1319827
METROLOGY
Scanning probe metrology in the presence of surface charge
J. E. Griffith; E. M. Kneedler; S. Ningen; A. Berghaus; C. E. Bryson, III; S. Pau; E. Houge; T. Shofner
J. Vac. Sci. Technol. B 18, 3264–3267 (2000)
https://doi.org/10.1116/1.1313586
Two-dimensional spatial-phase-locked electron-beam lithography via sparse sampling
J. Vac. Sci. Technol. B 18, 3268–3271 (2000)
https://doi.org/10.1116/1.1314371
Microcomb design and fabrication for high accuracy optical assembly
Carl G. Chen; Ralf K. Heilmann; Paul T. Konkola; Olivier Mongrard; Glen P. Monnelly; Mark L. Schattenburg
J. Vac. Sci. Technol. B 18, 3272–3276 (2000)
https://doi.org/10.1116/1.1313585
Relativistic corrections in displacement measuring interferometry
J. Vac. Sci. Technol. B 18, 3277–3281 (2000)
https://doi.org/10.1116/1.1313584
Beam steering system and spatial filtering applied to interference lithography
J. Vac. Sci. Technol. B 18, 3282–3286 (2000)
https://doi.org/10.1116/1.1314385
Characterization of field stitching in electron-beam lithography using moiré metrology
J. Vac. Sci. Technol. B 18, 3287–3291 (2000)
https://doi.org/10.1116/1.1313573
RESISTS
Surface and line-edge roughness in solution and plasma developed negative tone resists: Experiment and simulation
J. Vac. Sci. Technol. B 18, 3292–3296 (2000)
https://doi.org/10.1116/1.1321281
Energy transfer between electrons and photoresist: Its relation to resolution
J. Vac. Sci. Technol. B 18, 3297–3302 (2000)
https://doi.org/10.1116/1.1318188
Comparison of resist collapse properties for deep ultraviolet and 193 nm resist platforms
J. Vac. Sci. Technol. B 18, 3303–3307 (2000)
https://doi.org/10.1116/1.1321280
Aqueous-based photoresist drying using supercritical carbon dioxide to prevent pattern collapse
Darı́o L. Goldfarb; Juan J. de Pablo; Paul F. Nealey; John P. Simons; Wayne M. Moreau; Marie Angelopoulos
J. Vac. Sci. Technol. B 18, 3313–3317 (2000)
https://doi.org/10.1116/1.1313582
Enhancement of resist resolution and sensitivity via applied electric field
J. Vac. Sci. Technol. B 18, 3318–3322 (2000)
https://doi.org/10.1116/1.1324646
Optimized bilayer hexamethyldisiloxane film as bottom antireflective coating for both KrF and ArF lithographies
J. Vac. Sci. Technol. B 18, 3323–3327 (2000)
https://doi.org/10.1116/1.1321273
Vacuum ultraviolet spectra of fluorocompounds for 157 nm lithography
J. Vac. Sci. Technol. B 18, 3328–3331 (2000)
https://doi.org/10.1116/1.1319836
Polymer photochemistry at advanced optical wavelengths
J. Vac. Sci. Technol. B 18, 3332–3339 (2000)
https://doi.org/10.1116/1.1318186
Modeling influence of structural changes in photoacid generators on 193 nm single layer resist imaging
Ebo Croffie; Lei Yuan; Mosong Cheng; Andrew Neureuther; Frank Houlihan; Ray Cirelli; Pat Watson; Om Nalamasu; Allen Gabor
J. Vac. Sci. Technol. B 18, 3340–3344 (2000)
https://doi.org/10.1116/1.1324636
Evaluation of alternative development process for high-aspect-ratio poly(methylmethacrylate) microstructures in deep x-ray lithography
J. Vac. Sci. Technol. B 18, 3354–3359 (2000)
https://doi.org/10.1116/1.1321759
Lithography using ultrathin resist films
J. Vac. Sci. Technol. B 18, 3360–3363 (2000)
https://doi.org/10.1116/1.1324640
Scaling of and reaction rate with film thickness in photoresist: A thermal probe study
J. Vac. Sci. Technol. B 18, 3376–3380 (2000)
https://doi.org/10.1116/1.1324621
Resolution limit of negative tone chemically amplified resist used for hybrid lithography: Influence of the molecular weight
L. Pain; C. Higgins; B. Scarfoglière; S. Tedesco; B. Dal’Zotto; C. Gourgon; M. Ribeiro; T. Kusumoto; M. Suetsugu; R. Hanawa
J. Vac. Sci. Technol. B 18, 3388–3395 (2000)
https://doi.org/10.1116/1.1321288
157 nm resist materials: Progress report
Colin Brodsky; Jeff Byers; Will Conley; Raymond Hung; Shintaro Yamada; Kyle Patterson; Mark Somervell; Brian Trinque; H. V. Tran; Sungseo Cho; Takashi Chiba; Shang-Ho Lin; Andrew Jamieson; Heather Johnson; Tony Vander Heyden; C. Grant Willson
J. Vac. Sci. Technol. B 18, 3396–3401 (2000)
https://doi.org/10.1116/1.1321762
1 kV resist technology for microcolumn-based electron-beam lithography
J. Vac. Sci. Technol. B 18, 3408–3413 (2000)
https://doi.org/10.1116/1.1321758
Nanoscale patterning of self-assembled monolayers with electrons
J. Vac. Sci. Technol. B 18, 3414–3418 (2000)
https://doi.org/10.1116/1.1319711
Hydrogen silsesquioxane/novolak bilayer resist for high aspect ratio nanoscale electron-beam lithography
J. Vac. Sci. Technol. B 18, 3419–3423 (2000)
https://doi.org/10.1116/1.1319682
High-purity, ultrahigh-resolution calixarene electron-beam negative resist
J. Vac. Sci. Technol. B 18, 3424–3427 (2000)
https://doi.org/10.1116/1.1321274
Calixarene G-line double resist process with 15 nm resolution and large area exposure capability
J. Vac. Sci. Technol. B 18, 3428–3430 (2000)
https://doi.org/10.1116/1.1314386
Aqueous base development and acid diffusion length optimization in negative epoxy resist for electron beam lithography
J. Vac. Sci. Technol. B 18, 3431–3434 (2000)
https://doi.org/10.1116/1.1324615
Roughness study of a positive tone high performance SCALPEL resist
J. Vac. Sci. Technol. B 18, 3435–3440 (2000)
https://doi.org/10.1116/1.1321289
Influence of developer and development conditions on the behavior of high molecular weight electron beam resists
J. Vac. Sci. Technol. B 18, 3441–3444 (2000)
https://doi.org/10.1116/1.1319834
Evolutionary optimization of the electron-beam lithography process for gate fabrication of high electron mobility transistors
J. Vac. Sci. Technol. B 18, 3445–3449 (2000)
https://doi.org/10.1116/1.1321277
Mechanical properties and pattern collapse of chemically amplified photoresists
J. Vac. Sci. Technol. B 18, 3450–3452 (2000)
https://doi.org/10.1116/1.1319833
DRY ETCHING
Kinetics and crystal orientation dependence in high aspect ratio silicon dry etching
J. Vac. Sci. Technol. B 18, 3453–3461 (2000)
https://doi.org/10.1116/1.1313578
High speed anisotropic dry etching of CoNbZr for next generation magnetic recording
J. Vac. Sci. Technol. B 18, 3462–3466 (2000)
https://doi.org/10.1116/1.1313577
Effects of reactive ion etching on the electrical characteristics of GaN
J. Vac. Sci. Technol. B 18, 3467–3470 (2000)
https://doi.org/10.1116/1.1320799
High resolution inductively coupled plasma etching of 30 nm lines and spaces in tungsten and silicon
J. Vac. Sci. Technol. B 18, 3471–3475 (2000)
https://doi.org/10.1116/1.1326922
NANOFABRICATION AND NANODEVICES
Comparative study of self-aligned and nonself-aligned SiGe modulation-doped field effect transistors with nanometer gate lengths
J. Vac. Sci. Technol. B 18, 3488–3492 (2000)
https://doi.org/10.1116/1.1321286
Nanofabrication using structure controlled hydrogenated Si clusters deposited on Si surfaces
J. Vac. Sci. Technol. B 18, 3497–3500 (2000)
https://doi.org/10.1116/1.1324620
Nanofabrication techniques for lasers with two-dimensional photonic crystal mirrors
J. Vac. Sci. Technol. B 18, 3501–3504 (2000)
https://doi.org/10.1116/1.1319826
Fabrication of three-dimensional photonic structures with submicrometer resolution by x-ray lithography
J. Vac. Sci. Technol. B 18, 3505–3509 (2000)
https://doi.org/10.1116/1.1319825
Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap
Eiichi Kuramochi; Masaya Notomi; Toshiaki Tamamura; Takayuki Kawashima; Shojiro Kawakami; Jun-ichi Takahashi; Chiharu Takahashi
J. Vac. Sci. Technol. B 18, 3510–3513 (2000)
https://doi.org/10.1116/1.1319824
Nanoheteroepitaxy: Nanofabrication route to improved epitaxial growth
J. Vac. Sci. Technol. B 18, 3514–3520 (2000)
https://doi.org/10.1116/1.1321283
Fabrication of 30 nm T gates using as a supporting and definition layer
J. Vac. Sci. Technol. B 18, 3521–3524 (2000)
https://doi.org/10.1116/1.1321279
Combining advanced lithographic techniques and self-assembly of thin films of diblock copolymers to produce templates for nanofabrication
J. Vac. Sci. Technol. B 18, 3530–3534 (2000)
https://doi.org/10.1116/1.1313572
Oxide nanodots and ultrathin layers fabricated on silicon using nonfocused multicharged ion beams
J. Vac. Sci. Technol. B 18, 3535–3538 (2000)
https://doi.org/10.1116/1.1324647
Optimization of a lithographic and ion beam etching process for nanostructuring magnetoresistive thin film stacks
J. Vac. Sci. Technol. B 18, 3539–3543 (2000)
https://doi.org/10.1116/1.1324639
Field emission cathode array with self-aligned gate electrode fabricated by silicon micromachining
W. Barth; T. Debski; F. Shi; P. Hudek; I. Kostic; I. W. Rangelow; S. Biehl; T. Iwert; P. Grabiec; K. Studzinska; S. Mitura; I. I. Bekh; A. E. Lushkin4; L. G. Il’chenko; V. V. Il’chenko; G. Haindl
J. Vac. Sci. Technol. B 18, 3544–3548 (2000)
https://doi.org/10.1116/1.1324648
Actuation and internal friction of torsional nanomechanical silicon resonators
J. Vac. Sci. Technol. B 18, 3549–3551 (2000)
https://doi.org/10.1116/1.1313571
NANOIMPRINT
Fabrication of quantum point contacts by imprint lithography and transport studies
Ingo Martini; Silke Kuhn; Martin Kamp; Lukas Worschech; Alfred Forchel; Dominik Eisert; Johannes Koeth; Rint Sijbesma
J. Vac. Sci. Technol. B 18, 3561–3563 (2000)
https://doi.org/10.1116/1.1319705
Quantitative analysis of the molding of nanostructures
J. Vac. Sci. Technol. B 18, 3564–3568 (2000)
https://doi.org/10.1116/1.1324622
Electron-beam fabrication of nonplanar templates for contact printing
J. Vac. Sci. Technol. B 18, 3569–3571 (2000)
https://doi.org/10.1116/1.1319704
Step and flash imprint lithography: Template surface treatment and defect analysis
T. Bailey; B. J. Choi; M. Colburn; M. Meissl; S. Shaya; J. G. Ekerdt; S. V. Sreenivasan; C. G. Willson
J. Vac. Sci. Technol. B 18, 3572–3577 (2000)
https://doi.org/10.1116/1.1324618
Comparison of infrared frequency selective surfaces fabricated by direct-write electron-beam and bilayer nanoimprint lithographies
J. Vac. Sci. Technol. B 18, 3578–3581 (2000)
https://doi.org/10.1116/1.1319838
Master replication into thermosetting polymers for nanoimprinting
J. Vac. Sci. Technol. B 18, 3582–3585 (2000)
https://doi.org/10.1116/1.1319821
NANO-MEMS, BIO-NANO, MOLECULAR ELECTRONIC AND ATOMIC BEAM
Directed assembly of carbon nanotube electronic circuits by selective area chemical vapor deposition on prepatterned catalyst electrode structures
J. Vac. Sci. Technol. B 18, 3586–3589 (2000)
https://doi.org/10.1116/1.1319709
Real time pattern changing in atomic beam holography using phase shift by Stark effect
J. Vac. Sci. Technol. B 18, 3590–3593 (2000)
https://doi.org/10.1116/1.1319685
Lithographically defined nano and micro sensors using “float coating” of resist and electron beam lithography
J. Vac. Sci. Technol. B 18, 3594–3599 (2000)
https://doi.org/10.1116/1.1321271
Microcalorimetry applications of a surface micromachined bolometer-type thermal probe
J. Vac. Sci. Technol. B 18, 3600–3603 (2000)
https://doi.org/10.1116/1.1313581
Novel multibridge-structured piezoelectric microdevice for scanning force microscopy
J. Vac. Sci. Technol. B 18, 3604–3607 (2000)
https://doi.org/10.1116/1.1319684
Fabrication of diffractive optical elements for an integrated compact optical microelectromechanical system laser scanner
J. Vac. Sci. Technol. B 18, 3608–3611 (2000)
https://doi.org/10.1116/1.1313580
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Exploring SiC CVD growth parameters compatible with remote epitaxy
Daniel J. Pennachio, Jenifer R. Hajzus, et al.