Skip Nav Destination
Issues
March 1998
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Investigation of particle formation during the plasma enhanced chemical vapor deposition of amorphous silicon, oxide, and nitride films
J. Vac. Sci. Technol. B 16, 483–489 (1998)
https://doi.org/10.1116/1.589851
Effects of gas distribution on polysilicon etch rate uniformity for a low pressure, high density plasma
J. Vac. Sci. Technol. B 16, 490–495 (1998)
https://doi.org/10.1116/1.589852
Oxide loss at the gate periphery during high density plasma etching
J. Vac. Sci. Technol. B 16, 496–499 (1998)
https://doi.org/10.1116/1.589850
Selective etching in magnetized inductively coupled plasma
J. Vac. Sci. Technol. B 16, 500–506 (1998)
https://doi.org/10.1116/1.589853
on GaAs by direct electron cyclotron resonance plasma assisted nitridation of Si layer in Si/GaAs structure
J. Vac. Sci. Technol. B 16, 507–510 (1998)
https://doi.org/10.1116/1.590300
High-density inductively coupled plasma etching of GaAs/AlGaAs in A study using a mixture design experiment
J. Vac. Sci. Technol. B 16, 511–514 (1998)
https://doi.org/10.1116/1.590216
Dry etching of InP using a gas mixture with electron-cyclotron-resonance excitation
J. Vac. Sci. Technol. B 16, 515–518 (1998)
https://doi.org/10.1116/1.589854
Visualization of plasma uniformity in dry etching using the imaging plate
J. Vac. Sci. Technol. B 16, 519–522 (1998)
https://doi.org/10.1116/1.589855
Radial uniformity of an external-coil ionized physical vapor deposition source
J. Vac. Sci. Technol. B 16, 523–531 (1998)
https://doi.org/10.1116/1.589856
Antenna sputtering in an internal inductively coupled plasma for ionized physical vapor deposition
J. Vac. Sci. Technol. B 16, 532–535 (1998)
https://doi.org/10.1116/1.589857
Etching of 3C-SiC using CHF3/O2 and CHF3/O2/He plasmas at 1.75 Torr
J. Vac. Sci. Technol. B 16, 536–539 (1998)
https://doi.org/10.1116/1.589858
Maskless sub-m patterning of silicon carbide using a focused ion beam in combination with wet chemical etching
J. Vac. Sci. Technol. B 16, 540–543 (1998)
https://doi.org/10.1116/1.589859
Lithography with a mask of block copolymer microstructures
J. Vac. Sci. Technol. B 16, 544–552 (1998)
https://doi.org/10.1116/1.589860
Study of the influence of gas chemistry on notching in metal etching
J. Vac. Sci. Technol. B 16, 553–557 (1998)
https://doi.org/10.1116/1.589861
Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/ and de-ionized /buffered oxide etch
J. Vac. Sci. Technol. B 16, 558–560 (1998)
https://doi.org/10.1116/1.589862
Bromine/methanol wet chemical etching of via holes for InP microwave devices
J. Vac. Sci. Technol. B 16, 561–564 (1998)
https://doi.org/10.1116/1.589863
Features of InGaAlAs/InP heterostructures
J. Vac. Sci. Technol. B 16, 565–569 (1998)
https://doi.org/10.1116/1.589864
Investigation of GaAs/AlGaAs multiple quantum well waveguides involving unconfined energy states
J. Vac. Sci. Technol. B 16, 570–574 (1998)
https://doi.org/10.1116/1.589865
Photoluminescence study on twenty tilted T-shaped quantum wires fabricated by glancing-angle molecular beam epitaxy
J. Vac. Sci. Technol. B 16, 575–577 (1998)
https://doi.org/10.1116/1.589866
Temperature independent lifetime in InAlAs quantum dots
J. Vac. Sci. Technol. B 16, 578–581 (1998)
https://doi.org/10.1116/1.589932
Fabrication and photoluminescence investigation of silicon nanowires on silicon-on-insulator material
J. Vac. Sci. Technol. B 16, 582–588 (1998)
https://doi.org/10.1116/1.589867
Electrical properties of ion beam sputtered and ion assisted and films on silicon
J. Vac. Sci. Technol. B 16, 589–598 (1998)
https://doi.org/10.1116/1.589868
Epitaxy of heterostructures with very small roughness using a production-compatible ultrahigh vacuum-chemical vapor deposition reactor
J. Vac. Sci. Technol. B 16, 599–604 (1998)
https://doi.org/10.1116/1.589869
Fourier transform infrared spectroscopy of corona-processed silicon dioxide films
J. Vac. Sci. Technol. B 16, 605–608 (1998)
https://doi.org/10.1116/1.589870
Comparative study of back surface field contact formation using different lamp configurations in rapid thermal processing
J. Vac. Sci. Technol. B 16, 613–618 (1998)
https://doi.org/10.1116/1.589872
Roughness of thermal oxide layers grown on ion implanted silicon wafers
J. Vac. Sci. Technol. B 16, 619–627 (1998)
https://doi.org/10.1116/1.590298
Hot-carrier effects on the scattering parameters of lightly doped drain -type metal–oxide–semiconductor field effect transistors
J. Vac. Sci. Technol. B 16, 628–632 (1998)
https://doi.org/10.1116/1.589873
Influence of data analysis and other factors on the short-term stability of vertical scanning-probe microscope calibration measurements
J. Vac. Sci. Technol. B 16, 633–644 (1998)
https://doi.org/10.1116/1.589933
Scanning tunneling microscopy study of reconstruction of 0.8 monolayers Ga on an Si (001) surface
J. Vac. Sci. Technol. B 16, 645–650 (1998)
https://doi.org/10.1116/1.589874
Gated Si field emitter array prepared by using anodization
J. Vac. Sci. Technol. B 16, 651–653 (1998)
https://doi.org/10.1116/1.589875
Experimental and theoretical characterization of integrated field emission nanotips
J. Vac. Sci. Technol. B 16, 654–664 (1998)
https://doi.org/10.1116/1.589876
Fabrication of a silicon-vacuum field-emission microdiode with a moving anode
J. Vac. Sci. Technol. B 16, 665–669 (1998)
https://doi.org/10.1116/1.589877
Enhanced degradation of gate oxide in negative-gas plasma during reactive ion etching
J. Vac. Sci. Technol. B 16, 670–673 (1998)
https://doi.org/10.1116/1.589878
Preparation of ultrasharp diamond tip emitters by ion-beam etching
J. Vac. Sci. Technol. B 16, 678–680 (1998)
https://doi.org/10.1116/1.589879
Fabrication of thin-film cold cathodes by a modified chemical vapor deposition diamond process
J. Vac. Sci. Technol. B 16, 681–683 (1998)
https://doi.org/10.1116/1.589880
Effect of content and tip treatment on the field emission of micropatterned pyramidal diamond tips
J. Vac. Sci. Technol. B 16, 684–688 (1998)
https://doi.org/10.1116/1.589881
Field emission energy distribution analysis of wide-band-gap field emitters
J. Vac. Sci. Technol. B 16, 689–692 (1998)
https://doi.org/10.1116/1.589882
Modifying chemical vapor deposited diamond films for field emission displays
J. Vac. Sci. Technol. B 16, 693–696 (1998)
https://doi.org/10.1116/1.589883
Study of field electron emission phenomenon associated with N-doped amorphous diamond thin films
J. Vac. Sci. Technol. B 16, 697–699 (1998)
https://doi.org/10.1116/1.589884
Effect of N doping on the electron emission properties of diamondlike carbon film on a 2-in. Mo field emitter array panel
J. Vac. Sci. Technol. B 16, 705–709 (1998)
https://doi.org/10.1116/1.589886
Influence of silicon tip arrays on effective work function of diamond
G. Yuan; C. C. Jin; B. L. Zhang; H. Jiang; T. M. Zhou; Y. Q. Ning; Y. Z. Wang; W. B. Wang; Y. X. Jin; H. Ji; C. Z. Gu
J. Vac. Sci. Technol. B 16, 710–711 (1998)
https://doi.org/10.1116/1.589887
Field emission properties of the polycrystalline diamond film prepared by microwave-assisted plasma chemical vapor deposition
J. Vac. Sci. Technol. B 16, 712–715 (1998)
https://doi.org/10.1116/1.589888
Electron energy distribution of diamond-coated field emitters
J. Vac. Sci. Technol. B 16, 716–719 (1998)
https://doi.org/10.1116/1.589889
Electron emission characteristics of polycrystalline diamond films
J. Vac. Sci. Technol. B 16, 720–723 (1998)
https://doi.org/10.1116/1.589890
Field emission characteristics of defective diamond films
Kyung Ho Park; Soonil Lee; Kug-Hyun Song; Jung Il Park; Kwang Ja Park; Seok-Yoon Han; Seong Jun Na; Nam-Yang Lee; Ken Ha Koh
J. Vac. Sci. Technol. B 16, 724–728 (1998)
https://doi.org/10.1116/1.589891
Field electron emission of diamondlike carbon films deposited by a laser ablation method
J. Vac. Sci. Technol. B 16, 729–731 (1998)
https://doi.org/10.1116/1.589892
Micropattern-gated diamond field emitter array
J. Vac. Sci. Technol. B 16, 732–735 (1998)
https://doi.org/10.1116/1.589893
Parameters for improving reliability of full color field emission display devices
J. Vac. Sci. Technol. B 16, 736–740 (1998)
https://doi.org/10.1116/1.589894
Vacuum analysis inside a field emission display panel: Experimental and Monte Carlo simulation results
J. Vac. Sci. Technol. B 16, 741–744 (1998)
https://doi.org/10.1116/1.589895
High field breakdown characteristics of micrometric gaps in vacuum
J. Vac. Sci. Technol. B 16, 745–748 (1998)
https://doi.org/10.1116/1.589896
Field emitter array development for high frequency applications
J. Vac. Sci. Technol. B 16, 749–753 (1998)
https://doi.org/10.1116/1.590217
Field emitter array development for microwave applications. II
J. Vac. Sci. Technol. B 16, 758–761 (1998)
https://doi.org/10.1116/1.589898
Nanometer-scale gap control for low voltage and high current operation of field emission array
J. Vac. Sci. Technol. B 16, 762–764 (1998)
https://doi.org/10.1116/1.589899
Fabrication of self-aligned silicon field emission devices and effects of surface passivation on emission current
J. Vac. Sci. Technol. B 16, 765–769 (1998)
https://doi.org/10.1116/1.589900
Self-aligned Si gate field emitter arrays using the transfer mold technique
J. Vac. Sci. Technol. B 16, 770–772 (1998)
https://doi.org/10.1116/1.589901
Polycrystalline silicon field emitter arrays by silicidation-sharpening technique at low temperature
J. Vac. Sci. Technol. B 16, 773–776 (1998)
https://doi.org/10.1116/1.589902
Fabrication and characterization of gated porous silicon cathode field emission arrays
J. Vac. Sci. Technol. B 16, 777–779 (1998)
https://doi.org/10.1116/1.589903
Effect of laser irradiation on electron emission from Si field emitter arrays
J. Vac. Sci. Technol. B 16, 780–782 (1998)
https://doi.org/10.1116/1.589904
Effects of thermal annealing on emission characteristics and emitter surface properties of a Spindt-type field emission cathode
J. Vac. Sci. Technol. B 16, 783–786 (1998)
https://doi.org/10.1116/1.590218
Fabrication and emission characteristics of GaAs tip and wedge-shaped field emitter arrays by wet etching
J. Vac. Sci. Technol. B 16, 787–789 (1998)
https://doi.org/10.1116/1.589905
Electron emission from gated silicide field emitter arrays
J. Vac. Sci. Technol. B 16, 790–792 (1998)
https://doi.org/10.1116/1.589906
Efficient surface-emitting cold cathodes based on electroluminescent porous silicon diodes
J. Vac. Sci. Technol. B 16, 793–795 (1998)
https://doi.org/10.1116/1.589907
Microfabrication and characterization of gridded polycrystalline silicon field emitter devices
J. Vac. Sci. Technol. B 16, 796–798 (1998)
https://doi.org/10.1116/1.590219
Effect of gas ambient on improvement in emission behavior of Si field emitter arrays
J. Vac. Sci. Technol. B 16, 799–802 (1998)
https://doi.org/10.1116/1.589908
Resonant Fowler–Nordheim tunneling emission from metal-oxide-semiconductor cathodes
J. Vac. Sci. Technol. B 16, 803–806 (1998)
https://doi.org/10.1116/1.589909
Fabrication of metal field emitter arrays for low voltage and high current operation
J. Vac. Sci. Technol. B 16, 807–810 (1998)
https://doi.org/10.1116/1.589910
Fabrication and characterization of silicon field emitter arrays with focusing electrode by the chemical mechanical polishing process
J. Vac. Sci. Technol. B 16, 811–814 (1998)
https://doi.org/10.1116/1.589911
Analysis of electron emission degradation in silicon field emitter arrays
J. Vac. Sci. Technol. B 16, 815–817 (1998)
https://doi.org/10.1116/1.589912
Tunneling emission from valence band of Si-metal–oxide–semiconductor electron tunneling cathode
Junji Ikeda; Atsushi Yamada; Kazuya Okamoto; Yoshiaki Abe; Kaoru Tahara; Hidenori Mimura; Kuniyoshi Yokoo
J. Vac. Sci. Technol. B 16, 818–821 (1998)
https://doi.org/10.1116/1.589913
GaN field emitter array diode with integrated anode
J. Vac. Sci. Technol. B 16, 822–825 (1998)
https://doi.org/10.1116/1.589914
Characterization of two by two electron-beam microcolumn array aligned with field emission array
Jeong-Young Park; Jared D. Lera; H. J. Choi; G. H. Buh; C. J. Kang; J. H. Jung; S. S. Choi; D. Jeon; Young Kuk
J. Vac. Sci. Technol. B 16, 826–828 (1998)
https://doi.org/10.1116/1.589915
Emission characteristics of ZrN thin film field emitter array fabricated by ion beam assisted deposition technique
J. Vac. Sci. Technol. B 16, 829–832 (1998)
https://doi.org/10.1116/1.589916
Fabrication of GaN field emitter arrays by selective area growth technique
J. Vac. Sci. Technol. B 16, 833–835 (1998)
https://doi.org/10.1116/1.590220
Atomic investigation of individual apexes of diamond emitters by a scanning atom probe
Osamu Nishikawa; Takahiro Sekine; Yoshikatsu Ohtani; Kiyoshi Maeda; Yoshihiro Numada; Masafumi Watanabe
J. Vac. Sci. Technol. B 16, 836–840 (1998)
https://doi.org/10.1116/1.589917
Emission observation of a microtip cathode array with an electrostatic-lens projector: Statistical approach
J. Vac. Sci. Technol. B 16, 841–850 (1998)
https://doi.org/10.1116/1.590221
Metal–insulator–semiconductor emitter with an epitaxial layer as the insulator
J. Vac. Sci. Technol. B 16, 851–854 (1998)
https://doi.org/10.1116/1.589918
Investigation of Ce-doped silicates for low voltage field emission displays
J. Vac. Sci. Technol. B 16, 855–857 (1998)
https://doi.org/10.1116/1.589919
Compositional dependence of luminescence of lithium zinc gallate phosphor
J. Vac. Sci. Technol. B 16, 858–861 (1998)
https://doi.org/10.1116/1.589920
Surface application of molybdenum silicide onto gated poly-Si emitters for enhanced field emission performance
J. Vac. Sci. Technol. B 16, 866–870 (1998)
https://doi.org/10.1116/1.589922
Emission characteristics of TiN-coated silicon field emitter arrays
J. Vac. Sci. Technol. B 16, 871–874 (1998)
https://doi.org/10.1116/1.590222
Reduction of work function on a W(100) field emitter due to co-adsorption of Si and Ti
J. Vac. Sci. Technol. B 16, 875–879 (1998)
https://doi.org/10.1116/1.589923
Transient and stationary field emission currents from semiconductors computed by a simple semi-classical method
J. Vac. Sci. Technol. B 16, 888–894 (1998)
https://doi.org/10.1116/1.589925
Emission stability analysis of cone-shaped metal-insulator-semiconductor cathode by Monte Carlo simulation
J. Vac. Sci. Technol. B 16, 895–899 (1998)
https://doi.org/10.1116/1.589926
Model calculations of internal field emission and characteristics of a composite -Si and N–diamond cold cathode source
J. Vac. Sci. Technol. B 16, 900–905 (1998)
https://doi.org/10.1116/1.589927
Calculation of bulk states contributions to field emission from GaN
J. Vac. Sci. Technol. B 16, 906–909 (1998)
https://doi.org/10.1116/1.589928
Deviations from the Fowler–Nordheim theory and peculiarities of field electron emission from small-scale objects
J. Vac. Sci. Technol. B 16, 910–915 (1998)
https://doi.org/10.1116/1.589929
Characteristics and circuit model of a field emission triode
J. Vac. Sci. Technol. B 16, 916–919 (1998)
https://doi.org/10.1116/1.589930
Effective three-dimensional simulation of field emitter array and its optimal design methodology using an evolution strategy
J. Vac. Sci. Technol. B 16, 920–922 (1998)
https://doi.org/10.1116/1.589931
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Filtering the beam from an ionic liquid ion source
Alexander C. G. Storey, Aydin Sabouri, et al.