Skip Nav Destination
Issues
May 1996
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Noncontact scanning force microscopy using a direct‐oscillating piezoelectric microcantilever
J. Vac. Sci. Technol. B 14, 1577–1581 (1996)
https://doi.org/10.1116/1.589193
Combined surface plasmon resonance and scanning force microscope instrument
J. Vac. Sci. Technol. B 14, 1582–1586 (1996)
https://doi.org/10.1116/1.589194
Atomic species identification in scanning tunneling microscopy by time‐of‐flight spectroscopy
J. Vac. Sci. Technol. B 14, 1587–1590 (1996)
https://doi.org/10.1116/1.589195
Shallow ripples with giant wavelengths observed by atomic force microscopy: Real effects and the report of a new artifact
J. Vac. Sci. Technol. B 14, 1591–1595 (1996)
https://doi.org/10.1116/1.589196
C60 manipulation and cluster formation using a scanning tunneling microscope
J. Vac. Sci. Technol. B 14, 1596–1599 (1996)
https://doi.org/10.1116/1.589197
Scanning force microscopy study of the surface topography of thin BaTiO3 films deposited by pulsed laser ablation
J. Vac. Sci. Technol. B 14, 1600–1606 (1996)
https://doi.org/10.1116/1.589198
Cross‐sectional scanning tunneling spectroscopy of cleaved, silicon‐based metal–oxide–semiconductor junctions
J. Vac. Sci. Technol. B 14, 1607–1610 (1996)
https://doi.org/10.1116/1.589199
In situ observation of the tip shape of Co–Ge liquid alloy ion sources in a high‐voltage transmission electron microscope
J. Vac. Sci. Technol. B 14, 1621–1629 (1996)
https://doi.org/10.1116/1.589201
Application of time‐resolved scanning electron microscopy to the analysis of the motion of micromechanical structures
J. Vac. Sci. Technol. B 14, 1630–1634 (1996)
https://doi.org/10.1116/1.589202
Influence of Coulomb interactions on choice of magnification, aperture size, and source brightness in a two lens focused ion beam column
J. Vac. Sci. Technol. B 14, 1635–1641 (1996)
https://doi.org/10.1116/1.589203
Nanometer‐scale lithography on Si(001) using adsorbed H as an atomic layer resist
J. Vac. Sci. Technol. B 14, 1642–1649 (1996)
https://doi.org/10.1116/1.589204
Examination of Ge/Si and GeSi/Si surface nanostructures using transmission electron microscopy and focused ion beam assisted processing
J. Vac. Sci. Technol. B 14, 1650–1654 (1996)
https://doi.org/10.1116/1.589205
Morphology of thin Sb layers grown on Si(111)7×7 at room temperature
J. Vac. Sci. Technol. B 14, 1655–1659 (1996)
https://doi.org/10.1116/1.589206
Epitaxial growth of Si1−x−yGexCy alloy layers on (100) Si by rapid thermal chemical vapor deposition using methylsilane
Jian Mi; Patricia Warren; Marc Gailhanou; Jean‐Daniel Ganière; Michel Dutoit; Pierre‐Henri Jouneau; Raymond Houriet
J. Vac. Sci. Technol. B 14, 1660–1669 (1996)
https://doi.org/10.1116/1.589207
Buried‐gate oxide thinning during epitaxial lateral overgrowth for dual‐gated metal–oxide–semiconductor field‐effect transistors
J. Vac. Sci. Technol. B 14, 1670–1674 (1996)
https://doi.org/10.1116/1.589208
Characterization of Si1−xGex epilayers grown using a commercially available ultrahigh vacuum chemical vapor deposition reactor
H. Lafontaine; D. C. Houghton; D. Elliot; N. L. Rowell; J.‐M. Baribeau; S. Laframboise; G. I. Sproule; S. J. Rolfe
J. Vac. Sci. Technol. B 14, 1675–1681 (1996)
https://doi.org/10.1116/1.589209
Microwave plasma nitridation of Si(100), Ge(100), and Si1−xGex surfaces: A comparative study
J. Vac. Sci. Technol. B 14, 1682–1686 (1996)
https://doi.org/10.1116/1.589210
In situ investigation of the passivation of Si and Ge by electron cyclotron resonance plasma enhanced chemical vapor deposition of SiO2
J. Vac. Sci. Technol. B 14, 1687–1696 (1996)
https://doi.org/10.1116/1.589211
Measurement of N in nitrided oxides using spectroscopic immersion ellipsometry
J. Vac. Sci. Technol. B 14, 1697–1701 (1996)
https://doi.org/10.1116/1.589212
Analysis of Fourier transform infrared spectra and peak shifts in plasma‐enhanced chemical vapor deposited fluorinated silica glasses
J. Vac. Sci. Technol. B 14, 1702–1705 (1996)
https://doi.org/10.1116/1.589213
Structural and electrical characterization of TiO2 grown from titanium tetrakis‐isopropoxide (TTIP) and TTIP/H2O ambients
J. Vac. Sci. Technol. B 14, 1706–1711 (1996)
https://doi.org/10.1116/1.589214
Silicon dioxide passivation of InP/InGaAs metal‐semiconductor‐metal photodetectors
J. Vac. Sci. Technol. B 14, 1712–1718 (1996)
https://doi.org/10.1116/1.589215
Molecular‐beam epitaxy of high quality lattice matched In1−x−yGaxAlyAs epitaxial layers on InP substrates
J. Vac. Sci. Technol. B 14, 1719–1724 (1996)
https://doi.org/10.1116/1.589216
Basic analysis of atomic‐scale growth mechanisms for molecular beam epitaxy of GaAs using atomic hydrogen as a surfactant
J. Vac. Sci. Technol. B 14, 1725–1728 (1996)
https://doi.org/10.1116/1.588547
Antimony doped GaAs: Role of the isoelectronic dopant in defect evolution
J. Vac. Sci. Technol. B 14, 1729–1735 (1996)
https://doi.org/10.1116/1.588548
Influence of a ZnTe buffer layer on the structural quality of CdTe epilayers grown on (100)GaAs by metalorganic vapor phase epitaxy
G. Leo; M. Longo; N. Lovergine; A. M. Mancini; L. Vasanelli; A. V. Drigo; F. Romanato; T. Peluso; L. Tapfer
J. Vac. Sci. Technol. B 14, 1739–1744 (1996)
https://doi.org/10.1116/1.588550
Effects of low‐temperature‐grown GaAs and AlGaAs on the current of a metal–insulator–semiconductor structure
C. L. Chen; L. J. Mahoney; K. B. Nichols; M. J. Manfra; E. R. Brown; P. M. Nitishin; K. M. Molvar; B. F. Gramstorff; R. A. Murphy
J. Vac. Sci. Technol. B 14, 1745–1751 (1996)
https://doi.org/10.1116/1.588551
Comparison of masking materials for high microwave power CH4/H2/Ar etching of III–V semiconductors
J. Vac. Sci. Technol. B 14, 1752–1757 (1996)
https://doi.org/10.1116/1.588552
BCl3/N2 dry etching of InP, InAlP, and InGaP
F. Ren; J. R. Lothian; J. M. Kuo; W. S. Hobson; J. Lopata; J. A. Caballero; S. J. Pearton; M. W. Cole
J. Vac. Sci. Technol. B 14, 1758–1763 (1996)
https://doi.org/10.1116/1.588553
Smooth etching of various III/V and II/VI semiconductors by Cl2 reactive ion beam etching
J. Vac. Sci. Technol. B 14, 1764–1772 (1996)
https://doi.org/10.1116/1.588554
Influence of CH4/H2 reactive ion etching on the deep levels of Si‐doped AlxGa1−xAs (x=0.25)
J. Vac. Sci. Technol. B 14, 1773–1779 (1996)
https://doi.org/10.1116/1.588555
Low temperature chemically assisted ion‐beam etching processes using Cl2, CH3I, and IBr3 to etch InP optoelectronic devices
J. Vac. Sci. Technol. B 14, 1780–1783 (1996)
https://doi.org/10.1116/1.588556
Fringe stabilization and depth monitoring during the holographic photoelectrochemical etching of n‐InP (100) substrates
J. Vac. Sci. Technol. B 14, 1784–1790 (1996)
https://doi.org/10.1116/1.588557
High rate and highly selective anisotropic etching for WSix/poly‐Si using electron cyclotron resonance plasma
J. Vac. Sci. Technol. B 14, 1791–1795 (1996)
https://doi.org/10.1116/1.588558
In situ fiber optic thermometry of wafer surface etched with an electron cyclotron resonance source
J. Vac. Sci. Technol. B 14, 1807–1811 (1996)
https://doi.org/10.1116/1.588560
Effects of surface cleaning on electrical properties for Ni contacts to p‐type ZnSe
J. Vac. Sci. Technol. B 14, 1812–1818 (1996)
https://doi.org/10.1116/1.588561
Thin, high atomic weight refractory film deposition for diffusion barrier, adhesion layer, and seed layer applications
J. Vac. Sci. Technol. B 14, 1819–1827 (1996)
https://doi.org/10.1116/1.588562
Chemical vapor deposition of copper from CuI hexafluoroacetylacetonate trimethylvinylsilane for ultralarge scale integration applications
Gregory Braeckelmann; Dirk Manger; Aaron Burke; Gregory G. Peterson; Alain E. Kaloyeros; Cindy Reidsema; Thomas R. Omstead; James F. Loan; John J. Sullivan
J. Vac. Sci. Technol. B 14, 1828–1836 (1996)
https://doi.org/10.1116/1.588563
Film property comparison of Ti/TiN deposited by collimated and uncollimated physical vapor deposition techniques
J. Vac. Sci. Technol. B 14, 1837–1845 (1996)
https://doi.org/10.1116/1.588564
Step coverage comparison of Ti/TiN deposited by collimated and uncollimated physical vapor deposition techniques
J. Vac. Sci. Technol. B 14, 1846–1852 (1996)
https://doi.org/10.1116/1.588565
Cu metallization using a permanent magnet electron cyclotron resonance microwave plasma/sputtering hybrid system
J. Vac. Sci. Technol. B 14, 1853–1859 (1996)
https://doi.org/10.1116/1.588566
Comment on ‘‘Optimization of electrostatic deflectors’’ [J. Vac. Sci. Technol. B 13, 142 (1995)]
J. Vac. Sci. Technol. B 14, 1860–1863 (1996)
https://doi.org/10.1116/1.588567
Calculation of etching profile in the photolithographic process on As2S3 thin films
J. Vac. Sci. Technol. B 14, 1864–1866 (1996)
https://doi.org/10.1116/1.588568
Imaging fibers by atomic force microscopy
J. Vac. Sci. Technol. B 14, 1867–1869 (1996)
https://doi.org/10.1116/1.588569
Versatile sample handling system for scanning tunneling microscopy studies of molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 1870–1872 (1996)
https://doi.org/10.1116/1.588570
Control of emission characteristics of silicon field emitter arrays by an ion implantation technique
J. Vac. Sci. Technol. B 14, 1885–1888 (1996)
https://doi.org/10.1116/1.588572
Instability and reliability of silicon field emission array
J. Vac. Sci. Technol. B 14, 1889–1894 (1996)
https://doi.org/10.1116/1.588573
Characterization of porous silicon field emitter properties
J. Vac. Sci. Technol. B 14, 1895–1898 (1996)
https://doi.org/10.1116/1.588574
Electron‐beam characteristics of double‐gated Si field emitter arrays
J. Vac. Sci. Technol. B 14, 1902–1905 (1996)
https://doi.org/10.1116/1.588951
Fabrication of silicon field emitters by forming porous silicon
J. Vac. Sci. Technol. B 14, 1906–1909 (1996)
https://doi.org/10.1116/1.588952
Polycrystalline silicon field emitters
J. Vac. Sci. Technol. B 14, 1910–1913 (1996)
https://doi.org/10.1116/1.588953
Influence of fill gases on the failure rate of gated silicon field emitter arrays
J. Vac. Sci. Technol. B 14, 1914–1917 (1996)
https://doi.org/10.1116/1.588954
Modeling and comparisons of field emitter devices with various geometries
J. Vac. Sci. Technol. B 14, 1924–1929 (1996)
https://doi.org/10.1116/1.588956
Spatial distribution of the electric field for field emission microtriodes
J. Vac. Sci. Technol. B 14, 1930–1933 (1996)
https://doi.org/10.1116/1.588957
Computer simulation of the field emission from multilayer cathodes
J. Vac. Sci. Technol. B 14, 1934–1937 (1996)
https://doi.org/10.1116/1.588958
Electrostatic analysis of field emission triode with volcano‐type gate
J. Vac. Sci. Technol. B 14, 1938–1941 (1996)
https://doi.org/10.1116/1.588959
Analytical and seminumerical models for gated field emitter arrays. I. Theory
J. Vac. Sci. Technol. B 14, 1942–1946 (1996)
https://doi.org/10.1116/1.588960
Analytical and seminumerical models for gated field emitter arrays. II. Comparison of theory to experiment
J. Vac. Sci. Technol. B 14, 1947–1951 (1996)
https://doi.org/10.1116/1.588961
Three dimensional axisymmetric space charge simulation via boundary elements and emitted particles
J. Vac. Sci. Technol. B 14, 1952–1957 (1996)
https://doi.org/10.1116/1.588962
Fabrication and testing of vertical metal edge emitters with well defined gate to emitter separation
J. Vac. Sci. Technol. B 14, 1958–1962 (1996)
https://doi.org/10.1116/1.588963
Manufacturing a patternable metallized substrate for tungsten ultralong field emitter array by use of the double ion beam deposition method
J. Vac. Sci. Technol. B 14, 1963–1965 (1996)
https://doi.org/10.1116/1.588964
New approach to manufacturing field emitter arrays with sub‐half‐micron gate apertures
J. Vac. Sci. Technol. B 14, 1966–1969 (1996)
https://doi.org/10.1116/1.588965
Cone‐shaped metal–insulator–semiconductor cathode for vacuum microelectronics
J. Vac. Sci. Technol. B 14, 1970–1972 (1996)
https://doi.org/10.1116/1.588966
Modification of field emitter array tip shape by focused ion‐beam irradiation
M. Takai; T. Kishimoto; M. Yamashita; H. Morimoto; S. Yura; A. Hosono; S. Okuda; S. Lipp; L. Frey; H. Ryssel
J. Vac. Sci. Technol. B 14, 1973–1976 (1996)
https://doi.org/10.1116/1.588967
Two‐stage distributed amplifier on field emitter arrays
Y. F. Zakharchenko; G. V. Torgashov; Y. V. Gulyaev; N. I. Sinitsyn; I. S. Nefedov; A. I. Zhbanov; E. M. Il’in
J. Vac. Sci. Technol. B 14, 1982–1985 (1996)
https://doi.org/10.1116/1.588969
Field‐emitter‐array development for microwave applications
J. Vac. Sci. Technol. B 14, 1986–1989 (1996)
https://doi.org/10.1116/1.588970
Optimization of field emission arrays for inductive output amplifiers
J. Vac. Sci. Technol. B 14, 1990–1993 (1996)
https://doi.org/10.1116/1.588971
A, B, and C characterization of gated field emission arrays for radio frequency device performance
J. Vac. Sci. Technol. B 14, 1994–1999 (1996)
https://doi.org/10.1116/1.588972
Novel high‐density plasma tool for large area flat panel display etching
J. Vac. Sci. Technol. B 14, 2000–2004 (1996)
https://doi.org/10.1116/1.588973
Electron field emission from chemical vapor deposited diamond
J. Vac. Sci. Technol. B 14, 2011–2019 (1996)
https://doi.org/10.1116/1.588976
Monte Carlo study of hot electron and ballistic transport in diamond: Low electric field region
J. Vac. Sci. Technol. B 14, 2020–2023 (1996)
https://doi.org/10.1116/1.588977
Characterization of amorphous carbon coated silicon field emitters
J. Vac. Sci. Technol. B 14, 2024–2029 (1996)
https://doi.org/10.1116/1.588978
Cold emission from the single‐crystalline microparticle of diamond on a Si tip
J. Vac. Sci. Technol. B 14, 2030–2033 (1996)
https://doi.org/10.1116/1.588979
Emission stability and high current performance of diamond‐coated Si emitters
J. Vac. Sci. Technol. B 14, 2034–2036 (1996)
https://doi.org/10.1116/1.588980
Calculation of electronic properties of defects in diamond: Application to electron emission
J. Vac. Sci. Technol. B 14, 2037–2040 (1996)
https://doi.org/10.1116/1.588981
Electron emission observations from as‐grown and vacuum‐coated chemical vapor deposited diamond
J. Vac. Sci. Technol. B 14, 2046–2049 (1996)
https://doi.org/10.1116/1.588983
Field emission from diamond coated molybdenum field emitters
J. Vac. Sci. Technol. B 14, 2050–2055 (1996)
https://doi.org/10.1116/1.588984
Field emission measurements with μm resolution on chemical‐vapor‐deposited polycrystalline diamond films
J. Vac. Sci. Technol. B 14, 2056–2059 (1996)
https://doi.org/10.1116/1.588985
Diamond emitters fabrication and theory
J. Vac. Sci. Technol. B 14, 2060–2067 (1996)
https://doi.org/10.1116/1.588986
Micropatterned polycrystalline diamond field emitter vacuum diode arrays
J. Vac. Sci. Technol. B 14, 2068–2071 (1996)
https://doi.org/10.1116/1.588987
Graded electron affinity electron source
J. Vac. Sci. Technol. B 14, 2072–2079 (1996)
https://doi.org/10.1116/1.588988
Vacuum emission of hot and ballistic electrons from GaAs
J. Vac. Sci. Technol. B 14, 2087–2089 (1996)
https://doi.org/10.1116/1.588875
Field emission from ZrC films on Si and Mo single emitters and emitter arrays
J. Vac. Sci. Technol. B 14, 2090–2092 (1996)
https://doi.org/10.1116/1.588876
Experiments of highly emissive metal–oxide–semiconductor electron tunneling cathode
J. Vac. Sci. Technol. B 14, 2096–2099 (1996)
https://doi.org/10.1116/1.588878
Analysis of vacuum microelectronic components by the use of special finite elements
J. Vac. Sci. Technol. B 14, 2100–2104 (1996)
https://doi.org/10.1116/1.588879
Microscopic characterization of field emitter array structure and work function by scanning Maxwell‐stress microscopy
J. Vac. Sci. Technol. B 14, 2105–2109 (1996)
https://doi.org/10.1116/1.588880
Performance of the trial scanning atom probe: New approach to evaluate the microtip apex
J. Vac. Sci. Technol. B 14, 2110–2113 (1996)
https://doi.org/10.1116/1.588881
Field emission characteristics of transition‐metal nitrides
J. Vac. Sci. Technol. B 14, 2114–2118 (1996)
https://doi.org/10.1116/1.588882
Bayard–Alpert vacuum gauge with microtips
J. Vac. Sci. Technol. B 14, 2119–2125 (1996)
https://doi.org/10.1116/1.588883
Parameters of the tip arrays covered by low work function layers
J. Vac. Sci. Technol. B 14, 2130–2134 (1996)
https://doi.org/10.1116/1.588885
Autocorrelation function of 1/f current fluctuations in vacuum microelectronics devices
J. Vac. Sci. Technol. B 14, 2135–2146 (1996)
https://doi.org/10.1116/1.588886
Real‐time simultaneous optical‐based flux monitoring of Al, Ga, and In using atomic absorption for molecular beam epitaxy
Paul Pinsukanjana; Andrew Jackson; Jan Tofte; Kevin Maranowski; Scott Campbell; John English; Scott Chalmers; Larry Coldren; Arthur Gossard
J. Vac. Sci. Technol. B 14, 2147–2150 (1996)
https://doi.org/10.1116/1.588887
Methodologies for in situ pyrometric interferometry monitoring and control of molecular beam epitaxy growth of AlAs/GaAs distributed Bragg reflectors
J. Vac. Sci. Technol. B 14, 2151–2156 (1996)
https://doi.org/10.1116/1.588888
Investigation of the accuracy of pyrometric interferometry in determining AlxGa1−xAs growth rates and compositions
J. Vac. Sci. Technol. B 14, 2157–2162 (1996)
https://doi.org/10.1116/1.588889
Photoemission oscillations as an in situ monitor of layer thickness with monolayer resolution
J. Vac. Sci. Technol. B 14, 2163–2165 (1996)
https://doi.org/10.1116/1.588890
Performance evaluation of the commercial point of inflection thermometry substrate temperature monitor
J. Vac. Sci. Technol. B 14, 2166–2169 (1996)
https://doi.org/10.1116/1.588891
Properties and applications of the ‘‘epitaxial shadow mask molecular beam epitaxy technique’’
J. Vac. Sci. Technol. B 14, 2175–2179 (1996)
https://doi.org/10.1116/1.588893
Siamese cell for group V flux measurements, uniform arsenide phosphide alloys, and quaternary lasers
J. Vac. Sci. Technol. B 14, 2180–2183 (1996)
https://doi.org/10.1116/1.588894
Analysis of cracking efficiency of an atomic hydrogen source, and its effect on desorption of AlxGa1−xAs native oxides
J. Vac. Sci. Technol. B 14, 2184–2186 (1996)
https://doi.org/10.1116/1.588895
Cell configuration‐induced strain in quaternary films
J. Vac. Sci. Technol. B 14, 2192–2194 (1996)
https://doi.org/10.1116/1.588897
Self‐assembled InSb and GaSb quantum dots on GaAs(001)
J. Vac. Sci. Technol. B 14, 2195–2198 (1996)
https://doi.org/10.1116/1.588898
New insights into the kinetics of the stress‐driven two‐dimensional to three‐dimensional transition
J. Vac. Sci. Technol. B 14, 2199–2202 (1996)
https://doi.org/10.1116/1.588899
Strained coherent InAs quantum box islands on GaAs(100): Size equalization, vertical self‐organization, and optical properties
J. Vac. Sci. Technol. B 14, 2203–2207 (1996)
https://doi.org/10.1116/1.588900
Structural and photoluminescence properties of growth‐induced InAs island columns in GaAs
J. Vac. Sci. Technol. B 14, 2208–2211 (1996)
https://doi.org/10.1116/1.588901
High index orientation effects of strained self‐assembled InGaAs quantum dots
J. Vac. Sci. Technol. B 14, 2212–2215 (1996)
https://doi.org/10.1116/1.588902
Commercial heterojunction bipolar transistor production by molecular beam epitaxy
Dwight C. Streit; Aaron K. Oki; Thomas R. Block; Michael D. Lammert; Matthew M. Hoppe; Donald K. Umemoto; Michael Wojtowicz
J. Vac. Sci. Technol. B 14, 2216–2220 (1996)
https://doi.org/10.1116/1.588903
Molecular beam epitaxy growth and characterization of InGaAlAs‐collector heterojunction bipolar transistors with 140 GHz fmax and 20 V breakdown
J. Vac. Sci. Technol. B 14, 2221–2224 (1996)
https://doi.org/10.1116/1.588904
InGaP/GaAs/InGaP double‐heterojunction bipolar transistors grown by solid‐source molecular‐beam epitaxy with a valved phosphorus cracker
J. Vac. Sci. Technol. B 14, 2225–2228 (1996)
https://doi.org/10.1116/1.588905
Surface segregation of arsenic and phosphorus from buried layers during Si molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2229–2232 (1996)
https://doi.org/10.1116/1.588906
In1−xAlxP/InAlAs/InGaAs and InAlAs/InAs0.3P0.7 high‐electron mobility transistor structures grown by solid source molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2233–2235 (1996)
https://doi.org/10.1116/1.588907
Pseudomorphic high‐electron‐mobility transistors with low‐temperature‐grown GaAs buffers
J. Vac. Sci. Technol. B 14, 2236–2239 (1996)
https://doi.org/10.1116/1.588908
Nondestructive test methodology for molecular beam epitaxy grown pseudomorphic high electron mobility transistor materials
J. Vac. Sci. Technol. B 14, 2240–2243 (1996)
https://doi.org/10.1116/1.588909
All solid source molecular beam epitaxy growth of GaxIn1−xAsyP1−y/InP lasers using phosphorus and arsenic valved cracking cells
J. Vac. Sci. Technol. B 14, 2244–2247 (1996)
https://doi.org/10.1116/1.588910
Molecular beam epitaxy growth of InGaP multiple quantum well structures on GaP for optical modulators
J. Vac. Sci. Technol. B 14, 2248–2251 (1996)
https://doi.org/10.1116/1.588911
Improved modulation contrast of asymmetric Fabry–Perot field‐effect transistor self‐electro‐optic effect devices by in situ thickness corrections
J. Vac. Sci. Technol. B 14, 2252–2255 (1996)
https://doi.org/10.1116/1.588912
Molecular beam epitaxy growth of resonant‐cavity separate‐absorption‐and‐multiplication avalanche photodiodes
J. Vac. Sci. Technol. B 14, 2256–2258 (1996)
https://doi.org/10.1116/1.588913
II–VI blue/green laser diodes on ZnSe substrates
C. Boney; Z. Yu; W. H. Rowland, Jr.; W. C. Hughes; J. W. Cook, Jr.; J. F. Schetzina; Gene Cantwell; William C. Harsch
J. Vac. Sci. Technol. B 14, 2259–2262 (1996)
https://doi.org/10.1116/1.588914
Molecular‐beam epitaxy growth of strontium thiogallate
J. Vac. Sci. Technol. B 14, 2263–2266 (1996)
https://doi.org/10.1116/1.588915
Molecular beam epitaxial growth of Eu‐doped CaF2 and BaF2 on Si
J. Vac. Sci. Technol. B 14, 2267–2270 (1996)
https://doi.org/10.1116/1.588916
Molecular beam epitaxy of high‐quality, nonstoichiometric multiple quantum wells
M. R. Melloch; I. Lahiri; D. D. Nolte; J. C. P. Chang; E. S. Harmon; J. M. Woodall; N. Y. Li; C. W. Tu
J. Vac. Sci. Technol. B 14, 2271–2274 (1996)
https://doi.org/10.1116/1.588917
Optical characterization of low temperature grown GaAs by transmission measurements above the band gap
J. Vac. Sci. Technol. B 14, 2275–2277 (1996)
https://doi.org/10.1116/1.588918
In situ and ex situ spectroscopic investigation of low temperature grown gallium arsenide by molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2278–2281 (1996)
https://doi.org/10.1116/1.588919
Material optimization for a polarized electron source from strained GaAs:Be grown on an InGaP pseudosubstrate
J. Vac. Sci. Technol. B 14, 2282–2285 (1996)
https://doi.org/10.1116/1.588920
Study of interface abruptness of molecular beam epitaxial GaAs/AlAs superlattices grown on GaAs (311) and (100) substrates
J. Vac. Sci. Technol. B 14, 2286–2289 (1996)
https://doi.org/10.1116/1.588921
Growth and characterization of high mobility two‐dimensional electron gases
J. Vac. Sci. Technol. B 14, 2290–2292 (1996)
https://doi.org/10.1116/1.588922
Influence of surface and interface states on the electrical properties of an Al0.2Ga0.8As/In0.18Ga0.82As δ ‐modulation‐doped heterostructure
J. Vac. Sci. Technol. B 14, 2293–2296 (1996)
https://doi.org/10.1116/1.588923
Low interface state density oxide‐GaAs structures fabricated by in situ molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2297–2300 (1996)
https://doi.org/10.1116/1.588924
Carbon tetrabromide doping memory effect, incorporation efficiency, and InAlAs/InGaAs heterojunction bipolar transistor application
J. Vac. Sci. Technol. B 14, 2301–2304 (1996)
https://doi.org/10.1116/1.588925
Comparison of (Al,Ga)As(110) grown by molecular beam epitaxy with As2 and As4
J. Vac. Sci. Technol. B 14, 2305–2308 (1996)
https://doi.org/10.1116/1.588926
X‐valley related luminescence from AlAs/(Al,Ga) As quantum well structures grown on (112)B GaAs substrates
J. Vac. Sci. Technol. B 14, 2309–2311 (1996)
https://doi.org/10.1116/1.588927
Room temperature red light photoluminescence from AlGaAs multiple quantum well structures at very low excitation intensities
J. Vac. Sci. Technol. B 14, 2315–2317 (1996)
https://doi.org/10.1116/1.588848
Analysis of molecular beam epitaxy grown Ga1−xAlxAs/Ga1−yAlyAs dielectric stack mirrors using complex indices of refraction
J. Vac. Sci. Technol. B 14, 2318–2321 (1996)
https://doi.org/10.1116/1.588849
Solid source molecular beam epitaxy of GaInAsP/InP: Growth mechanisms and machine operation
J. Vac. Sci. Technol. B 14, 2322–2324 (1996)
https://doi.org/10.1116/1.588850
Quantum confined Stark effect near 1.5 μm wavelength in InAs0.53P0.47/GayIn1−yP strain‐balanced quantum wells
J. Vac. Sci. Technol. B 14, 2327–2330 (1996)
https://doi.org/10.1116/1.588852
Study on improving InxGa1−xAs/InyGa1−yP heterointerfaces in gas‐source molecular beam expitaxy
J. Vac. Sci. Technol. B 14, 2331–2334 (1996)
https://doi.org/10.1116/1.588853
Atomic antimony for molecular beam epitaxy of high quality III–V semiconductor alloys
J. Vac. Sci. Technol. B 14, 2335–2338 (1996)
https://doi.org/10.1116/1.588854
Molecular‐beam epitaxial growth and characterization of AlxIn1−xSb/InSb quantum well structures
J. Vac. Sci. Technol. B 14, 2339–2342 (1996)
https://doi.org/10.1116/1.588855
Normal incidence infrared modulators using intersubband transitions in InAs/GaSb/AlSb stepped quantum wells grown by molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2343–2345 (1996)
https://doi.org/10.1116/1.588856
Molecular beam epitaxy growth kinetics for group III nitrides
C. T. Foxon; T. S. Cheng; S. E. Hooper; L. C. Jenkins; J. W. Orton; D. E. Lacklison; S. V. Novikov; T. B. Popova; V. V. Tret’yakov
J. Vac. Sci. Technol. B 14, 2346–2348 (1996)
https://doi.org/10.1116/1.588857
Molecular beam epitaxy growth and properties of GaN, AlxGa1−xN, and AlN on GaN/SiC substrates
M. A. L. Johnson; Shizuo Fujita; W. H. Rowland, Jr.; K. A. Bowers; W. C. Hughes; Y. W. He; N. A. El‐Masry; J. W. Cook, Jr.; J. F. Schetzina; J. Ren; J. A. Edmond
J. Vac. Sci. Technol. B 14, 2349–2353 (1996)
https://doi.org/10.1116/1.588858
High‐quality GaN and AlN grown by gas‐source molecular beam epitaxy using ammonia as the nitrogen source
J. Vac. Sci. Technol. B 14, 2354–2356 (1996)
https://doi.org/10.1116/1.588859
Investigation of GaN deposition on Si, Al2O3, and GaAs using in situ mass spectroscopy of recoiled ions and reflection high‐energy electron diffraction
J. Vac. Sci. Technol. B 14, 2357–2361 (1996)
https://doi.org/10.1116/1.588860
Molecular beam epitaxial growth and properties of short‐wave infrared Hg0.3Cd0.7Te films
J. Vac. Sci. Technol. B 14, 2362–2365 (1996)
https://doi.org/10.1116/1.588861
Heteroepitaxy of CdTe on {211} Si using crystallized amorphous ZnTe templates
J. Vac. Sci. Technol. B 14, 2366–2370 (1996)
https://doi.org/10.1116/1.588862
Phase instability of n‐CdS grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 14, 2371–2373 (1996)
https://doi.org/10.1116/1.588863
High quality CdTe/Cd1−xMgxTe quantum wells grown on GaAs (100) and (111) substrates by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 14, 2374–2377 (1996)
https://doi.org/10.1116/1.588864
Surface phenomena and kinetics of Si1−xGex/Si (0≤x<1) growth by molecular beam epitaxy using Si2H6 and Ge/GeH4
J. Vac. Sci. Technol. B 14, 2378–2380 (1996)
https://doi.org/10.1116/1.588865
Interfacet mass transport and facet evolution in selective epitaxial growth of Si by gas source molecular beam epitaxy
J. Vac. Sci. Technol. B 14, 2381–2386 (1996)
https://doi.org/10.1116/1.588866
Improved luminescence quality with an asymmetric confinement potential in Si‐based type‐II quantum wells grown on a graded SiGe relaxed buffer
J. Vac. Sci. Technol. B 14, 2387–2390 (1996)
https://doi.org/10.1116/1.588867
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Suppressing oxygen vacancy formation in ZrO2 to improve electrical properties by employing MoO2 bottom electrode
Jaehyeon Yun, Seungyeon Kim, et al.