Skip Nav Destination
Issues
March 1996
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Nanocluster formation by spin coating: Quantitative atomic force microscopy and Rutherford backscattering spectrometry analysis
J. Vac. Sci. Technol. B 14, 585–592 (1996)
https://doi.org/10.1116/1.589140
Direct observation of fullerene‐adsorbed tips by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 593–596 (1996)
https://doi.org/10.1116/1.589141
Scanning force microscopy for the study of domain structure in ferroelectric thin films
J. Vac. Sci. Technol. B 14, 602–605 (1996)
https://doi.org/10.1116/1.589143
Electron trajectories and light emitting images of starlike thin‐film field emitters
J. Vac. Sci. Technol. B 14, 606–611 (1996)
https://doi.org/10.1116/1.589144
Fabrication of Si field emitters by dry etching and mask erosion
J. Vac. Sci. Technol. B 14, 612–616 (1996)
https://doi.org/10.1116/1.589145
Ballistic electron emission microscopy studies of electron scattering in Au/GaAs Schottky diodes damaged by focused ion beam implantation
J. Vac. Sci. Technol. B 14, 617–622 (1996)
https://doi.org/10.1116/1.589146
Atomic scale roughness of GaAs(001)2×4 surfaces
J. Vac. Sci. Technol. B 14, 623–631 (1996)
https://doi.org/10.1116/1.589147
Application of phase‐sensitive photoreflectance spectroscopy to a study of undoped AlGaAs/GaAs quantum well structures
J. Vac. Sci. Technol. B 14, 632–637 (1996)
https://doi.org/10.1116/1.589148
Nonlinear characteristics induced by carrier accumulation in InAs/GaAs superlattice cap layer on GaAs/GaAlAs multi‐quantum well structure
J. Vac. Sci. Technol. B 14, 638–641 (1996)
https://doi.org/10.1116/1.589149
Strain relaxation in compositionally graded epitaxial layers
J. Vac. Sci. Technol. B 14, 642–646 (1996)
https://doi.org/10.1116/1.589150
Thermal stability and degradation mechanism of WSiN/InGaP Schottky diodes
J. Vac. Sci. Technol. B 14, 652–656 (1996)
https://doi.org/10.1116/1.589152
High‐temperature stable Ir–Al/n‐GaAs Schottky diodes: Effect of the barrier height controlling
J. Vac. Sci. Technol. B 14, 657–661 (1996)
https://doi.org/10.1116/1.589153
Electron beam induced deposition from W(CO)6 at 2 to 20 keV and its applications
J. Vac. Sci. Technol. B 14, 662–673 (1996)
https://doi.org/10.1116/1.589154
Properties of TaNx films as diffusion barriers in the thermally stable Cu/Si contact systems
J. Vac. Sci. Technol. B 14, 674–678 (1996)
https://doi.org/10.1116/1.589155
Simulation of uniformity and lifetime effects in collimated sputtering
J. Vac. Sci. Technol. B 14, 679–686 (1996)
https://doi.org/10.1116/1.589156
Number of voids formed on a line: Parameter for electromigration lifetime
J. Vac. Sci. Technol. B 14, 687–690 (1996)
https://doi.org/10.1116/1.589157
Study of the H2 remote plasma cleaning of InP substrate for epitaxial growth
J. Vac. Sci. Technol. B 14, 691–697 (1996)
https://doi.org/10.1116/1.589158
Optical properties of reactive‐ion‐etched Si/Si1−xGex heterostructures
T. Köster; J. Gondermann; B. Hadam; B. Spangenberg; M. Schütze; H. G. Roskos; H. Kurz; J. Brunner; G. Abstreiter
J. Vac. Sci. Technol. B 14, 698–706 (1996)
https://doi.org/10.1116/1.589159
Enhanced dry etching of silicon with deuterium plasma
J. Vac. Sci. Technol. B 14, 707–709 (1996)
https://doi.org/10.1116/1.589160
SiO2 to Si selectivity mechanisms in high density fluorocarbon plasma etching
K. H. R. Kirmse; A. E. Wendt; S. B. Disch; J. Z. Wu; I. C. Abraham; J. A. Meyer; R. A. Breun; R. Claude Woods
J. Vac. Sci. Technol. B 14, 710–715 (1996)
https://doi.org/10.1116/1.588702
MxP+: A new dielectric etcher with enabling technology, high productivity, and low cost‐of‐consumables
Hongching Shan; Evans Lee; Michael Welch; Bryan Pu; James Carducci; Kuang‐Han Ke; Hua Gao; Paul Luscher; Gerard Crean; Rynn Wang; Richard Blume; James Cooper; Robert Wu
J. Vac. Sci. Technol. B 14, 716–723 (1996)
https://doi.org/10.1116/1.588703
Effect of fluorine concentration on the etch characteristics of fluorinated tetraethylorthosilicate films
J. Vac. Sci. Technol. B 14, 724–726 (1996)
https://doi.org/10.1116/1.588704
Inductively coupled plasma for polymer etching of 200 mm wafers
J. Vac. Sci. Technol. B 14, 732–737 (1996)
https://doi.org/10.1116/1.588706
Investigation of low temperature SiO2 plasma enhanced chemical vapor deposition
J. Vac. Sci. Technol. B 14, 738–743 (1996)
https://doi.org/10.1116/1.588707
Real time investigation of nucleation and growth of silicon on silicon dioxide using silane and disilane in a rapid thermal processing system
Y. Z. Hu; D. J. Diehl; C. Y. Zhao; C. L. Wang; Q. Liu; E. A. Irene; K. N. Christensen; D. Venable; D. M. Maher
J. Vac. Sci. Technol. B 14, 744–750 (1996)
https://doi.org/10.1116/1.588708
Rugged surface polycrystalline silicon film deposition and its application in a stacked dynamic random access memory capacitor electrode
J. Vac. Sci. Technol. B 14, 751–756 (1996)
https://doi.org/10.1116/1.588709
Reliability of ultimate ultrathin silicon oxide films produced by the continuous ultradry process
J. Vac. Sci. Technol. B 14, 757–762 (1996)
https://doi.org/10.1116/1.588710
Quantitative depth profiling of boron in shallow BF+2‐implanted silicon by using laser‐ionization sputtered neutral mass spectrometry
J. Vac. Sci. Technol. B 14, 763–767 (1996)
https://doi.org/10.1116/1.588711
Growth of copper nanocrystallites on copper seed cones: Evidence for the presence of a liquid phase on an ion‐impacting cone surface
J. Vac. Sci. Technol. B 14, 768–771 (1996)
https://doi.org/10.1116/1.588712
Role of gas phase reactions in subatmospheric chemical‐vapor deposition ozone/TEOS processes for oxide deposition
J. Vac. Sci. Technol. B 14, 772–788 (1996)
https://doi.org/10.1116/1.588713
Scanning near‐field optical microscopy/spectroscopy of thin organic films
J. Vac. Sci. Technol. B 14, 800–803 (1996)
https://doi.org/10.1116/1.588716
Characteristics of photon scanning tunneling microscope read‐out
J. Vac. Sci. Technol. B 14, 804–808 (1996)
https://doi.org/10.1116/1.588717
Molecular orientation in polymers from near‐field optical polarization measurements
J. Vac. Sci. Technol. B 14, 809–811 (1996)
https://doi.org/10.1116/1.588718
Imaging of organic molecular films using a scanning near‐field optical microscope combined with an atomic force microscope
J. Vac. Sci. Technol. B 14, 812–815 (1996)
https://doi.org/10.1116/1.588719
Scattering of electromagnetic waves by silicon‐nitride tips
J. Vac. Sci. Technol. B 14, 816–819 (1996)
https://doi.org/10.1116/1.588720
Heterostructure interface characterization using scanning tunneling microscope excited time‐resolved luminescence
J. Vac. Sci. Technol. B 14, 820–823 (1996)
https://doi.org/10.1116/1.588721
Study of luminescent porous polycrystalline silicon thin films
J. Vac. Sci. Technol. B 14, 824–826 (1996)
https://doi.org/10.1116/1.588722
Design and performance analysis of a three‐dimensional sample translation device used in ultrahigh vacuum scanned probe microscopy
J. Vac. Sci. Technol. B 14, 827–831 (1996)
https://doi.org/10.1116/1.588723
Thermal imaging of thin films by scanning thermal microscope
J. Vac. Sci. Technol. B 14, 832–837 (1996)
https://doi.org/10.1116/1.588724
Microwave tunneling current from the resonant interaction of an amplitude modulated laser with a scanning tunneling microscope
J. Vac. Sci. Technol. B 14, 838–841 (1996)
https://doi.org/10.1116/1.588725
Voltage contrast in submicron integrated circuits by scanning force microscopy
J. Vac. Sci. Technol. B 14, 842–844 (1996)
https://doi.org/10.1116/1.588726
Shearing stress on the surface topography by scanning shearing stress microscopy
J. Vac. Sci. Technol. B 14, 849–851 (1996)
https://doi.org/10.1116/1.588728
Gamble mode: Resonance contact mode in atomic force microscopy
J. Vac. Sci. Technol. B 14, 852–855 (1996)
https://doi.org/10.1116/1.588729
Atomic force microscopy and lateral force microscopy using piezoresistive cantilevers
J. Vac. Sci. Technol. B 14, 856–860 (1996)
https://doi.org/10.1116/1.589161
New optoelectronic tip design for ultrafast scanning tunneling microscopy
R. H. M. Groeneveld; Th. Rasing; L. M. F. Kaufmann; E. Smalbrugge; J. H. Wolter; M. R. Melloch; H. van Kempen
J. Vac. Sci. Technol. B 14, 861–863 (1996)
https://doi.org/10.1116/1.589162
Driven nonlinear atomic force microscopy cantilevers: From noncontact to tapping modes of operation
J. Vac. Sci. Technol. B 14, 864–867 (1996)
https://doi.org/10.1116/1.589163
Direct measurement of laser momentum transfer to dense media by means of atomic force microscopy cantilevers
J. Vac. Sci. Technol. B 14, 868–871 (1996)
https://doi.org/10.1116/1.589164
Scanning force microscopy with two optical levers for detection of deformations of the cantilever
J. Vac. Sci. Technol. B 14, 872–876 (1996)
https://doi.org/10.1116/1.589165
Acoustic and dynamic force microscopy with ultrasonic probes
J. Vac. Sci. Technol. B 14, 877–881 (1996)
https://doi.org/10.1116/1.589166
Imaging mechanism and effects of adsorbed water in contact‐type scanning capacitance microscopy
J. Vac. Sci. Technol. B 14, 887–891 (1996)
https://doi.org/10.1116/1.589168
Imaging conducting surfaces and dielectric films by a scanning capacitance microscope
J. Vac. Sci. Technol. B 14, 892–896 (1996)
https://doi.org/10.1116/1.589169
Scanning tunneling microscopy head having integrated capacitive sensors for calibration of scanner displacements
J. Vac. Sci. Technol. B 14, 897–900 (1996)
https://doi.org/10.1116/1.589170
Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors
J. Vac. Sci. Technol. B 14, 901–905 (1996)
https://doi.org/10.1116/1.589171
Atomic structure of the steps on Si(001) studied by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 906–908 (1996)
https://doi.org/10.1116/1.589172
Scanning tunneling microscopy investigation of the dimer vacancy–dimer vacancy interaction on the Si(001) 2×n surface
J. Vac. Sci. Technol. B 14, 909–913 (1996)
https://doi.org/10.1116/1.589173
Variable low‐temperature scanning tunneling microscopy study of Si(001): Nature of the 2×1→c(2×4) phase transition
J. Vac. Sci. Technol. B 14, 914–917 (1996)
https://doi.org/10.1116/1.589174
Laser desorption from and reconstruction on Si(100) surfaces studied by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 918–924 (1996)
https://doi.org/10.1116/1.589175
Low‐temperature scanning tunneling microscopy on vicinal Ge(100)
J. Vac. Sci. Technol. B 14, 925–928 (1996)
https://doi.org/10.1116/1.589176
Atomic structure of the diamond (100) surface studied using scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 929–932 (1996)
https://doi.org/10.1116/1.589177
Scanning tunneling microscopy study of SiC(0001) surface reconstructions
J. Vac. Sci. Technol. B 14, 933–937 (1996)
https://doi.org/10.1116/1.589178
(2×4)/c(2×8) to (4×2)/c(8×2) transition on GaAs(001) surfaces
J. Vac. Sci. Technol. B 14, 943–947 (1996)
https://doi.org/10.1116/1.589180
Application of scanning tunneling microscopy to determine the exact charge states of surface point defects
J. Vac. Sci. Technol. B 14, 948–952 (1996)
https://doi.org/10.1116/1.589181
Atomic resolution imaging of InP(110) surface observed with ultrahigh vacuum atomic force microscope in noncontact mode
J. Vac. Sci. Technol. B 14, 953–956 (1996)
https://doi.org/10.1116/1.589182
Intrinsic defects at TiO2(110) surfaces studied with scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 961–965 (1996)
https://doi.org/10.1116/1.589184
Scanning tunneling microscopy of the UO2 (111) surface
J. Vac. Sci. Technol. B 14, 966–969 (1996)
https://doi.org/10.1116/1.589185
Layer‐by‐layer etching of HgI2 films and crystals by scanning force microscopy
J. Vac. Sci. Technol. B 14, 970–973 (1996)
https://doi.org/10.1116/1.589186
Growth of a uniaxial incommensurate C60 lattice on Ge(100)2×1
J. Vac. Sci. Technol. B 14, 974–978 (1996)
https://doi.org/10.1116/1.589187
Adsorption and decomposition of C60 molecules on Si(111) surfaces
J. Vac. Sci. Technol. B 14, 979–981 (1996)
https://doi.org/10.1116/1.589188
Low coverage adsorption of Sb4 on Si(113) studied by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 982–987 (1996)
https://doi.org/10.1116/1.589189
Atomic‐hydrogen‐induced Ag cluster formation on Si(111)‐√3×√3–Ag surface observed by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 988–991 (1996)
https://doi.org/10.1116/1.589190
Scanning tunneling microscopy of Sr adsorption on the Si(100)‐2×1 surface
J. Vac. Sci. Technol. B 14, 1000–1004 (1996)
https://doi.org/10.1116/1.588442
Pb/Si(111) investigation at the ultralow‐coverage range
J. Vac. Sci. Technol. B 14, 1005–1009 (1996)
https://doi.org/10.1116/1.588443
Submonolayer Pb deposition on Si(100) studied by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1010–1014 (1996)
https://doi.org/10.1116/1.588444
Studies of low coverage adsorption of Li on Si(001): Observation of negative differential resistance and electron trapping
J. Vac. Sci. Technol. B 14, 1015–1018 (1996)
https://doi.org/10.1116/1.588445
High‐temperature scanning tunneling microscopy study of the Li/Si(111) surface
J. Vac. Sci. Technol. B 14, 1019–1023 (1996)
https://doi.org/10.1116/1.588446
Island, trimer, and chain formation on the Sb‐terminated GaAs(111)B surface
J. Vac. Sci. Technol. B 14, 1024–1028 (1996)
https://doi.org/10.1116/1.588447
Scanning tunneling microscopy study of the interfacial structure of nickel silicides
J. Vac. Sci. Technol. B 14, 1029–1031 (1996)
https://doi.org/10.1116/1.588448
Interaction of vinyltrimethylsilane with the Si(111)‐(7×7) surface
J. Vac. Sci. Technol. B 14, 1032–1037 (1996)
https://doi.org/10.1116/1.588449
Combined scanning tunneling microscopy and infrared spectroscopy study of the interaction of diborane with Si(001)
J. Vac. Sci. Technol. B 14, 1038–1042 (1996)
https://doi.org/10.1116/1.588450
Nanoscale roughening of Si(001) by oxide desorption in ultrahigh vacuum
J. Vac. Sci. Technol. B 14, 1043–1047 (1996)
https://doi.org/10.1116/1.588451
Initial stages of the nitridation of the Si(111) surface observed by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1048–1050 (1996)
https://doi.org/10.1116/1.588397
Adsorption and reaction of NO on Si(111) studied by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1051–1054 (1996)
https://doi.org/10.1116/1.588398
Correlation between contact‐electrified charge groups on a thin silicon oxide
Takayuki Uchihashi; Takahiro Okusako; Yasuhiro Sugawara; Yoshiki Yamanishi; Takahiko Oasa; Seizo Morita
J. Vac. Sci. Technol. B 14, 1055–1059 (1996)
https://doi.org/10.1116/1.588399
Structure and electronic states on reduced BaTiO3 (100) surface observed by scanning tunneling microscopy and spectroscopy
Hiroshi Bando; Tetsushi Shimitzu; Yoshihiro Aiura; Yuichi Haruyama; Kunihiko Oka; Yoshikazu Nishihara
J. Vac. Sci. Technol. B 14, 1060–1063 (1996)
https://doi.org/10.1116/1.588400
Probing complex low‐dimensional solids with scanning probe microscopes: From charge density waves to high‐temperature superconductivity
J. Vac. Sci. Technol. B 14, 1064–1069 (1996)
https://doi.org/10.1116/1.588401
Spatial and energy variation of the local density of states in the charge density wave phase of 2H–NbSe2
J. Vac. Sci. Technol. B 14, 1070–1074 (1996)
https://doi.org/10.1116/1.588402
Moiré patterns in scanning tunneling microscopy images of layered materials
J. Vac. Sci. Technol. B 14, 1075–1078 (1996)
https://doi.org/10.1116/1.588403
Scanning tunneling microscope investigations of lead–phthalocyanine on MoS2
J. Vac. Sci. Technol. B 14, 1079–1082 (1996)
https://doi.org/10.1116/1.588404
Atomic force microscopy of mercury iodide crystal growth from porous media at room temperature
J. Vac. Sci. Technol. B 14, 1083–1089 (1996)
https://doi.org/10.1116/1.588405
Atomic force microscopy study of mercuric iodide surfaces
J. Vac. Sci. Technol. B 14, 1090–1095 (1996)
https://doi.org/10.1116/1.588406
Layered heavy metal iodides examined by atomic force microscopy
J. Vac. Sci. Technol. B 14, 1096–1104 (1996)
https://doi.org/10.1116/1.588407
Surface morphology of metalorganic vapor phase epitaxy grown InAs and InGaAs observed by atomic force microscopy
J. Vac. Sci. Technol. B 14, 1105–1108 (1996)
https://doi.org/10.1116/1.588408
Molecular arrangement of copper phthalocyanine on hydrogen‐terminated Si(111): Influence of surface roughness
J. Vac. Sci. Technol. B 14, 1109–1113 (1996)
https://doi.org/10.1116/1.588409
Atomic scale reaction regulated in one‐dimensional channels evidenced by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1114–1116 (1996)
https://doi.org/10.1116/1.588410
Tip‐induced lifting of the Au{100} (hex)‐phase reconstruction in a low temperature ultrahigh vacuum scanning tunneling microscope
J. Vac. Sci. Technol. B 14, 1117–1120 (1996)
https://doi.org/10.1116/1.588411
Comparative study of the interface roughness of Ag/Au and Cu/Au multilayers with scanning tunneling microscopy and x‐ray diffraction
J. Vac. Sci. Technol. B 14, 1121–1125 (1996)
https://doi.org/10.1116/1.588412
Structure of epitaxial thin TiOx films on W(110) as studied by low energy electron diffraction and scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1126–1130 (1996)
https://doi.org/10.1116/1.588413
Equilibrium morphology of Au(111) vicinal surfaces revealed by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1131–1135 (1996)
https://doi.org/10.1116/1.588414
Spatially and rotationally oriented adsorption of molecular adsorbates on Ag(111) investigated using cryogenic scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1136–1140 (1996)
https://doi.org/10.1116/1.588415
Growth of NiO(100) layers on Ag(100): Characterization by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1141–1144 (1996)
https://doi.org/10.1116/1.588416
Diffusion of atoms on Au(111) by the electric field gradient in scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1145–1148 (1996)
https://doi.org/10.1116/1.588417
Vicinal surfaces of Au(110) and Ag(110) investigated by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1149–1152 (1996)
https://doi.org/10.1116/1.588418
Tapping mode atomic force microscopy observation of self‐affine fractal roughness in electrochemically roughened silver electrode surfaces
J. Vac. Sci. Technol. B 14, 1153–1156 (1996)
https://doi.org/10.1116/1.588419
Atomic force microscopy investigations of loaded crack tips in NiAl
J. Vac. Sci. Technol. B 14, 1157–1161 (1996)
https://doi.org/10.1116/1.588420
In situ scanning tunneling microscope investigation of passivation and stainless steels and iron
J. Vac. Sci. Technol. B 14, 1162–1166 (1996)
https://doi.org/10.1116/1.588421
Scanning tunneling microscopy and spectroscopy on thin Fe3O4 (110) films on MgO
J. Vac. Sci. Technol. B 14, 1173–1175 (1996)
https://doi.org/10.1116/1.588423
Spatially resolved electron tunneling spectroscopy on single crystalline Rb3C60
J. Vac. Sci. Technol. B 14, 1176–1179 (1996)
https://doi.org/10.1116/1.588508
Surface structure of ferroelectric domains on the triglycine sulfate (010) surface
J. Vac. Sci. Technol. B 14, 1180–1183 (1996)
https://doi.org/10.1116/1.588509
Magnetic force microscopy analysis of the micromagnetization mode of double‐layered perpendicular magnetic recording media
J. Vac. Sci. Technol. B 14, 1184–1187 (1996)
https://doi.org/10.1116/1.588510
Growth structure of Fe on the Cu(001) surface
J. Vac. Sci. Technol. B 14, 1188–1190 (1996)
https://doi.org/10.1116/1.588511
Deconvolution of topographic and ferroelectric contrast by noncontact and friction force microscopy
J. Vac. Sci. Technol. B 14, 1191–1196 (1996)
https://doi.org/10.1116/1.588512
Scanning Hall probe microscopy of superconductors and magnetic materials
J. Vac. Sci. Technol. B 14, 1202–1205 (1996)
https://doi.org/10.1116/1.588514
Scanning tunneling microscope for magneto‐optical imaging
J. Vac. Sci. Technol. B 14, 1206–1209 (1996)
https://doi.org/10.1116/1.588515
Vortex images in thin films of YBa2Cu3O7−x and Bi2Sr2Ca1Cu2O8+x obtained by low‐temperature magnetic force microscopy
J. Vac. Sci. Technol. B 14, 1210–1213 (1996)
https://doi.org/10.1116/1.588516
Domain structure of Co/Pt multilayers studied by magnetic force microscopy
J. Vac. Sci. Technol. B 14, 1214–1216 (1996)
https://doi.org/10.1116/1.588517
Spectroscopic study of the CuO chains in YBa2Cu3O7−x
J. Vac. Sci. Technol. B 14, 1217–1220 (1996)
https://doi.org/10.1116/1.588518
Schottky barrier height measurement on NiSi2/Si(100) by capacitance microscope
J. Vac. Sci. Technol. B 14, 1221–1223 (1996)
https://doi.org/10.1116/1.588519
Scanning tunneling spectroscopy on low‐ and high‐Tc superconductors
J. Vac. Sci. Technol. B 14, 1224–1228 (1996)
https://doi.org/10.1116/1.588520
Observation of Coulomb staircase and negative differential resistance at room temperature by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1229–1233 (1996)
https://doi.org/10.1116/1.588521
Charge injection and extraction on organic dot structures by atomic force microscopy
J. Vac. Sci. Technol. B 14, 1234–1237 (1996)
https://doi.org/10.1116/1.588522
Role of interface microstructure in rectifying metal/semiconductor contacts: Ballistic electron emission observations correlated to microstructure
Brent A. Morgan; Ken M. Ring; Karen L. Kavanagh; A. Alec Talin; R. Stanley Williams; Takashi Yasuda; Takanari Yasui; Yusaburo Segawa
J. Vac. Sci. Technol. B 14, 1238–1242 (1996)
https://doi.org/10.1116/1.588523
Energy band of manipulated atomic structures on an insulator substrate
J. Vac. Sci. Technol. B 14, 1243–1249 (1996)
https://doi.org/10.1116/1.588524
Elastic deformations of tip and sample during atomic force microscope measurements
J. Vac. Sci. Technol. B 14, 1250–1254 (1996)
https://doi.org/10.1116/1.588525
Friction forces on hydrogen passivated (110) silicon and silicon dioxide studied by scanning force microscopy
J. Vac. Sci. Technol. B 14, 1255–1258 (1996)
https://doi.org/10.1116/1.588526
Study of plastic flow in ultrasmall Au contacts
J. Vac. Sci. Technol. B 14, 1259–1263 (1996)
https://doi.org/10.1116/1.588527
Influence of humidity on friction measurements of supported MoS2 single layers
J. Vac. Sci. Technol. B 14, 1264–1267 (1996)
https://doi.org/10.1116/1.588528
Study of molecular scale friction on stearic acid crystals by friction force microscopy
J. Vac. Sci. Technol. B 14, 1272–1275 (1996)
https://doi.org/10.1116/1.589079
Dewetting dynamics and nucleation of polymers observed by elastic and friction force microscopy
J. Vac. Sci. Technol. B 14, 1276–1279 (1996)
https://doi.org/10.1116/1.589080
Friction on the atomic scale: An ultrahigh vacuum atomic force microscopy study on ionic crystals
R. Lüthi; E. Meyer; M. Bammerlin; L. Howald; H. Haefke; T. Lehmann; C. Loppacher; H.‐J. Güntherodt; T. Gyalog; H. Thomas
J. Vac. Sci. Technol. B 14, 1280–1284 (1996)
https://doi.org/10.1116/1.589081
Site‐specific friction force spectroscopy
J. Vac. Sci. Technol. B 14, 1285–1288 (1996)
https://doi.org/10.1116/1.589082
Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope
J. Vac. Sci. Technol. B 14, 1289–1295 (1996)
https://doi.org/10.1116/1.589083
Scanning force and friction microscopy at highly oriented polycrystalline graphite and CuP2(100) surfaces in ultrahigh vacuum
J. Vac. Sci. Technol. B 14, 1296–1301 (1996)
https://doi.org/10.1116/1.589084
Tip–sample interactions: Extraction of single molecular pair potentials from force curves
J. Vac. Sci. Technol. B 14, 1302–1307 (1996)
https://doi.org/10.1116/1.589085
Materials’ properties measurements: Choosing the optimal scanning probe microscope configuration
J. Vac. Sci. Technol. B 14, 1308–1312 (1996)
https://doi.org/10.1116/1.589086
Transient response of tapping scanning force microscopy in liquids
J. Vac. Sci. Technol. B 14, 1313–1317 (1996)
https://doi.org/10.1116/1.589087
Atomic force microscopy images obtained with C60 modified tips
J. Vac. Sci. Technol. B 14, 1318–1321 (1996)
https://doi.org/10.1116/1.589088
Low‐voltage electron‐beam lithography with scanning tunneling microscopy in air: A new method for producing structures with high aspect ratios
J. Vac. Sci. Technol. B 14, 1327–1330 (1996)
https://doi.org/10.1116/1.589090
Application of scanning tunneling microscopy nanofabrication process to single electron transistor
J. Vac. Sci. Technol. B 14, 1331–1335 (1996)
https://doi.org/10.1116/1.589091
Electron‐stimulated desorption of hydrogen from the Si(111) surface by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1336–1340 (1996)
https://doi.org/10.1116/1.589092
Imaging and manipulation of nanometer‐size liquid droplets by scanning polarization force microscopy
J. Vac. Sci. Technol. B 14, 1341–1343 (1996)
https://doi.org/10.1116/1.589093
Scanning tunneling microscopy induced chemical‐vapor deposition of semiconductor quantum dots
J. Vac. Sci. Technol. B 14, 1344–1348 (1996)
https://doi.org/10.1116/1.589094
Ultrahigh density data storage on Ag–TDCN thin films by scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1349–1352 (1996)
https://doi.org/10.1116/1.589095
Information storage using conductance change of Langmuir–Blodgett film and atomic force microscope/scanning tunneling microscope
K. Yano; R. Kuroda; Y. Shimada; S. Shido; M. Kyogaku; H. Matsuda; K. Takimoto; K. Eguchi; T. Nakagiri
J. Vac. Sci. Technol. B 14, 1353–1355 (1996)
https://doi.org/10.1116/1.589096
Critical humidity for removal of atoms from the gold surface with scanning tunneling microscopy
J. Vac. Sci. Technol. B 14, 1356–1359 (1996)
https://doi.org/10.1116/1.589097
Morphology and dissolution processes of metal sulfide minerals observed with the electrochemical scanning tunneling microscope
J. Vac. Sci. Technol. B 14, 1360–1364 (1996)
https://doi.org/10.1116/1.589098
Stability of surface atomic structures of ionic crystals studied by atomic force microscopy observation of various faces of CaSO4 crystal in solutions
J. Vac. Sci. Technol. B 14, 1365–1368 (1996)
https://doi.org/10.1116/1.589099
Atomic structures and growth mechanisms of electrodeposited Ag and Te films as discerned by atomic force microscopy
J. Vac. Sci. Technol. B 14, 1369–1372 (1996)
https://doi.org/10.1116/1.589100
In situ studies of potassium hydrogen phthalate crystal dissolution using scanning probe microscopy
J. Vac. Sci. Technol. B 14, 1373–1377 (1996)
https://doi.org/10.1116/1.589101
Effects of electric potentials on surface forces in electrolyte solutions
J. Vac. Sci. Technol. B 14, 1378–1382 (1996)
https://doi.org/10.1116/1.589102
Atomic force microscopy stress sensors for studies in liquids
J. Vac. Sci. Technol. B 14, 1383–1385 (1996)
https://doi.org/10.1116/1.589103
Approaching the liquid/air interface with scanning force microscopy
J. Vac. Sci. Technol. B 14, 1386–1389 (1996)
https://doi.org/10.1116/1.589104
Atomic force microscopy of biomolecules
J. Vac. Sci. Technol. B 14, 1390–1394 (1996)
https://doi.org/10.1116/1.589105
Atomic force microscopy observation of native neurons and modifications induced by glutamate
J. Vac. Sci. Technol. B 14, 1395–1398 (1996)
https://doi.org/10.1116/1.589106
Combination of fluorescence in situ hybridization and scanning force microscopy for the ultrastructural characterization of defined chromatin regions
J. Vac. Sci. Technol. B 14, 1399–1404 (1996)
https://doi.org/10.1116/1.589107
Reconstruction of ribosomal subunits and rDNA chromatin imaged by scanning force microscopy
Wolfgang Fritzsche; Linda Martin; Drena Dobbs; Daniel Jondle; Richard Miller; James Vesenka; Eric Henderson
J. Vac. Sci. Technol. B 14, 1405–1409 (1996)
https://doi.org/10.1116/1.589108
Atomic force microscopy reconstruction of G‐wire DNAa)
J. Vac. Sci. Technol. B 14, 1413–1417 (1996)
https://doi.org/10.1116/1.589110
Modified DNA immobilized on bioreactive self‐assembled monolayer on gold for dynamic force microscopy imaging in aqueous buffer solution
J. Vac. Sci. Technol. B 14, 1418–1421 (1996)
https://doi.org/10.1116/1.589111
Covalent immobilization of immunoglobulins G and Fab′ fragments on gold substrates for scanning force microscopy imaging in liquids
J. Vac. Sci. Technol. B 14, 1422–1426 (1996)
https://doi.org/10.1116/1.589112