Skip Nav Destination
Issues
January 1994
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Fabrication of a nanoscale, in‐plane gated quantum wire by low energy ion exposure
J. Vac. Sci. Technol. B 12, 8–13 (1994)
https://doi.org/10.1116/1.587114
Discretization of curved lines and arbitrary areas for ion and electron beam writing on a nonrectangular grid
J. Vac. Sci. Technol. B 12, 14–19 (1994)
https://doi.org/10.1116/1.587173
Fabrication of aspheric high numerical aperture reflective diffractive optic elements using electron beam lithography
J. Vac. Sci. Technol. B 12, 20–25 (1994)
https://doi.org/10.1116/1.587185
Realization of limited‐area cathodes and their performance in an electron optical column
J. Vac. Sci. Technol. B 12, 26–31 (1994)
https://doi.org/10.1116/1.587153
Thin film materials for the preparation of attenuating phase shift masks
J. Vac. Sci. Technol. B 12, 32–36 (1994)
https://doi.org/10.1116/1.587163
New chemically amplified positive resist for electron beam lithography
J. Vac. Sci. Technol. B 12, 37–43 (1994)
https://doi.org/10.1116/1.587130
Ag2Te/As2S3, a top‐surface, high‐contrast negative‐tone resist for deep ultraviolet submicron lithography
J. Vac. Sci. Technol. B 12, 44–47 (1994)
https://doi.org/10.1116/1.587099
Polycrystalline silicon ‘‘slit nanowire’’ for possible quantum devices
Yasuo Wada; Tokuo Kure; Toshiyuki Yoshimura; Yoshimi Sudou; Takashi Kobayashi; Yasushi Gotou; Seiichi Kondo
J. Vac. Sci. Technol. B 12, 48–53 (1994)
https://doi.org/10.1116/1.587104
Shallow trench isolation for ultra‐large‐scale integrated devices
J. Vac. Sci. Technol. B 12, 54–58 (1994)
https://doi.org/10.1116/1.587107
Three‐dimensional thermal analysis of high density triple‐level interconnection structures in very large scale integrated circuits
J. Vac. Sci. Technol. B 12, 59–62 (1994)
https://doi.org/10.1116/1.587108
Relationship between void formation and electromigration performance in Al/TiW multilayered interconnections
J. Vac. Sci. Technol. B 12, 63–68 (1994)
https://doi.org/10.1116/1.587109
Performance of the plasma deposited tungsten nitride barrier to prevent the interdiffusion of Al and Si
J. Vac. Sci. Technol. B 12, 69–72 (1994)
https://doi.org/10.1116/1.587110
Chemistry of silicon surfaces after wet chemical preparation: A thermodesorption spectroscopy study
J. Vac. Sci. Technol. B 12, 78–87 (1994)
https://doi.org/10.1116/1.587112
Characterization of the Si/SiO2 interface morphology from quantum oscillations in Fowler–Nordheim tunneling currents
J. Vac. Sci. Technol. B 12, 88–95 (1994)
https://doi.org/10.1116/1.587113
Sidewall passivation during the etching of poly‐Si in an electron cyclotron resonance plasma of HBr
J. Vac. Sci. Technol. B 12, 96–101 (1994)
https://doi.org/10.1116/1.587115
Evaluation and control of device damage in high density plasma etching
J. Vac. Sci. Technol. B 12, 102–111 (1994)
https://doi.org/10.1116/1.587165
Advanced electron cyclotron resonance plasma etching technology for precise ultra‐large‐scale integration patterning
J. Vac. Sci. Technol. B 12, 112–115 (1994)
https://doi.org/10.1116/1.587166
On the spatial resolution of two‐dimensional doping profiles as measured using secondary ion mass spectrometry tomography
J. Vac. Sci. Technol. B 12, 116–124 (1994)
https://doi.org/10.1116/1.587167
Roles of a Si insertion layer at GaAs/AlAs heterointerface determined by x‐ray photoemission spectroscopy
J. Vac. Sci. Technol. B 12, 125–129 (1994)
https://doi.org/10.1116/1.587168
Plasma deposited SiO2 for planar self‐aligned gate metal–insulator–semiconductor field effect transistors on semi‐insulating InP
J. Vac. Sci. Technol. B 12, 130–133 (1994)
https://doi.org/10.1116/1.587169
Room temperature photoluminescence from modulation doped AlGaAs/InGaAs/GaAs quantum wells
J. Vac. Sci. Technol. B 12, 134–141 (1994)
https://doi.org/10.1116/1.587170
Comparison of surface recombination velocities in InGaP and AlGaAs mesa diodes
J. Vac. Sci. Technol. B 12, 142–146 (1994)
https://doi.org/10.1116/1.587171
Experimental observations and modeling of ultra‐shallow BF2 and As implants in single‐crystal silicon
J. Vac. Sci. Technol. B 12, 166–171 (1994)
https://doi.org/10.1116/1.587177
Atomic layer epitaxy deposition processes
J. Vac. Sci. Technol. B 12, 179–185 (1994)
https://doi.org/10.1116/1.587179
Angle of incidence effects of an oxygen ion beam on the surface chemistry of GaAs
J. Vac. Sci. Technol. B 12, 199–204 (1994)
https://doi.org/10.1116/1.587181
Secondary ion mass spectrometry measurements of shallow boron profiles in cobalt, silicon, and cobalt disilicide
J. Vac. Sci. Technol. B 12, 209–213 (1994)
https://doi.org/10.1116/1.587184
Ultra‐shallow depth profiling with time‐of‐flight secondary ion mass spectrometry
J. Vac. Sci. Technol. B 12, 214–218 (1994)
https://doi.org/10.1116/1.587143
Solid source diffusion from agglomerating silicide sources. I. Measurement and modeling
J. Vac. Sci. Technol. B 12, 219–229 (1994)
https://doi.org/10.1116/1.587144
Improvement of depth resolution in secondary ion mass spectrometry depth profiling of silicided poly contacts
J. Vac. Sci. Technol. B 12, 230–233 (1994)
https://doi.org/10.1116/1.587145
Method for the measurement of the lateral dose distribution of dopants at implantation or diffusion mask edges (‘‘lateral SIMS’’)
J. Vac. Sci. Technol. B 12, 234–242 (1994)
https://doi.org/10.1116/1.587146
Comparison between computer simulation and direct secondary ion mass spectrometry measurement of lateral dopant distributions
J. Vac. Sci. Technol. B 12, 243–246 (1994)
https://doi.org/10.1116/1.587147
Two‐dimensional doping profiles from experimentally measured one‐dimensional secondary ion mass spectroscopy data
J. Vac. Sci. Technol. B 12, 247–253 (1994)
https://doi.org/10.1116/1.587148
Effect of matrix stopping power on sputter depth profile broadening
J. Vac. Sci. Technol. B 12, 254–257 (1994)
https://doi.org/10.1116/1.587149
Limiting factors for secondary ion mass spectrometry profiling
J. Vac. Sci. Technol. B 12, 269–275 (1994)
https://doi.org/10.1116/1.587152
Two‐dimensional spreading resistance profiling: Recent understandings and applications
J. Vac. Sci. Technol. B 12, 276–282 (1994)
https://doi.org/10.1116/1.587154
Automatic generation of shallow electrically active dopant profiles from spreading resistance measurements
J. Vac. Sci. Technol. B 12, 290–297 (1994)
https://doi.org/10.1116/1.587156
On the reduction of carrier spilling effects during resistance measurements with the spreading impedance probe
J. Vac. Sci. Technol. B 12, 298–303 (1994)
https://doi.org/10.1116/1.587157
Towards a physical understanding of spreading resistance probe technique profiling
J. Vac. Sci. Technol. B 12, 304–311 (1994)
https://doi.org/10.1116/1.587158
From InP/GaInAsP interface study to nanometer range heterostructure detection with probe method
J. Vac. Sci. Technol. B 12, 312–316 (1994)
https://doi.org/10.1116/1.587159
Profiling of silicide–silicon structures using a combination of the spreading resistance and point contact current–voltage methods
J. Vac. Sci. Technol. B 12, 317–321 (1994)
https://doi.org/10.1116/1.587160
Detection of anomalous defect‐enhanced diffusion using advanced spreading resistance measurements and analysis
J. Vac. Sci. Technol. B 12, 322–326 (1994)
https://doi.org/10.1116/1.587161
Device structure characterization using the comparative capacitance–voltage technique
J. Vac. Sci. Technol. B 12, 332–335 (1994)
https://doi.org/10.1116/1.587164
Accurate profiling of ultra‐shallow implants with mercury gate metal–oxide–semiconductor capacitance–voltage
J. Vac. Sci. Technol. B 12, 336–341 (1994)
https://doi.org/10.1116/1.587121
Characterization of structure/dopant behavior by electron microscopy
J. Vac. Sci. Technol. B 12, 347–352 (1994)
https://doi.org/10.1116/1.587123
Transmission electron microscopy study of two‐dimensional semiconductor device junction delineation by chemical etching
J. Vac. Sci. Technol. B 12, 353–356 (1994)
https://doi.org/10.1116/1.587124
Electron‐beam induced current determination of shallow junction depth
J. Vac. Sci. Technol. B 12, 357–361 (1994)
https://doi.org/10.1116/1.587125
Cross‐sectional scanning tunneling microscopy on heterostructures: Atomic resolution, composition fluctuations and doping
J. Vac. Sci. Technol. B 12, 362–368 (1994)
https://doi.org/10.1116/1.587126
Capacitance–voltage measurement and modeling on a nanometer scale by scanning C–V microscopy
J. Vac. Sci. Technol. B 12, 369–372 (1994)
https://doi.org/10.1116/1.587127
Junction locations by scanning tunneling microscopy: In‐air‐ambient investigation of passivated GaAs pn junctions
J. Vac. Sci. Technol. B 12, 373–377 (1994)
https://doi.org/10.1116/1.587128
Two‐dimensional delineation of semiconductor doping by scanning resistance microscopy
J. Vac. Sci. Technol. B 12, 378–382 (1994)
https://doi.org/10.1116/1.587129
Electrical and structural characterization of boron‐doped Si1−xGex strained layers
J. Vac. Sci. Technol. B 12, 383–386 (1994)
https://doi.org/10.1116/1.587131
Anomalous low‐temperature dopant diffusion from in situ doped polycrystalline and epitaxial Si layers into the monocrystalline Si substrate
J. Vac. Sci. Technol. B 12, 387–390 (1994)
https://doi.org/10.1116/1.587132
Boltzmann–Matano analysis based model for boron diffusion from polysilicon into single crystal silicon
J. Vac. Sci. Technol. B 12, 391–394 (1994)
https://doi.org/10.1116/1.587133
Measurement of the sheet resistance of doped layers in semiconductors by microwave reflection
J. Vac. Sci. Technol. B 12, 395–398 (1994)
https://doi.org/10.1116/1.587134
Ultra‐shallow boxlike profiles fabricated by pulsed ultraviolet‐laser doping process
J. Vac. Sci. Technol. B 12, 399–404 (1994)
https://doi.org/10.1116/1.587135
Size‐scalable, 2.45‐GHz electron cyclotron resonance plasma source using permanent magnets and waveguide coupling
J. Vac. Sci. Technol. B 12, 408–415 (1994)
https://doi.org/10.1116/1.587136
Optimization of an electron cyclotron resonance plasma etch process for n+ polysilicon: HBr process chemistry
J. Vac. Sci. Technol. B 12, 416–421 (1994)
https://doi.org/10.1116/1.587137
High aspect ratio polyimide etching using an oxygen plasma generated by electron cyclotron resonance source
J. Vac. Sci. Technol. B 12, 422–426 (1994)
https://doi.org/10.1116/1.587138
Selective dry etching in a high density plasma for 0.5 μm complementary metal–oxide–semiconductor technology
J. Vac. Sci. Technol. B 12, 427–432 (1994)
https://doi.org/10.1116/1.587139
Dielectric thin film deposition by electron cyclotron resonance plasma chemical vapor deposition for optoelectronics
J. Vac. Sci. Technol. B 12, 433–440 (1994)
https://doi.org/10.1116/1.587140
Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing
J. Vac. Sci. Technol. B 12, 461–477 (1994)
https://doi.org/10.1116/1.587101
Two‐dimensional fluid model of high density inductively coupled plasma sources
J. Vac. Sci. Technol. B 12, 478–485 (1994)
https://doi.org/10.1116/1.587102
Transport and heating of small particles in high density plasma sources
J. Vac. Sci. Technol. B 12, 486–493 (1994)
https://doi.org/10.1116/1.587103
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Machine learning driven measurement of high-aspect-ratio nanostructures using Mueller matrix spectroscopic ellipsometry
Shiva Mudide, Nick Keller, et al.