Skip Nav Destination
Issues
November 1993
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Gas phase etching of Si(111)‐(7×7) surfaces by oxygen observed by scanning tunneling microscopy
J. Vac. Sci. Technol. B 11, 1955–1961 (1993)
https://doi.org/10.1116/1.586527
Fabrication of micromachined silicon tip transducer for tactile sensing
J. Vac. Sci. Technol. B 11, 1962–1967 (1993)
https://doi.org/10.1116/1.586528
Influence of oxygen on the formation of ripples on Si
J. Vac. Sci. Technol. B 11, 1968–1981 (1993)
https://doi.org/10.1116/1.586529
Scanning tunneling microscopy study of deoxygenated and de‐ionized water rinsed GaAs(111)‐B surfaces
J. Vac. Sci. Technol. B 11, 1982–1986 (1993)
https://doi.org/10.1116/1.586530
Development of an ultrahigh vacuum atomic force microscope for investigations of semiconductor surfaces
J. Vac. Sci. Technol. B 11, 1987–1991 (1993)
https://doi.org/10.1116/1.586531
Nanofabrication of metal structures in gold films deposited on mica
J. Vac. Sci. Technol. B 11, 1992–1999 (1993)
https://doi.org/10.1116/1.586532
Rearrangement of Au(111) surface as a result of scanning with scanning tunneling/atomic force microscopes
J. Vac. Sci. Technol. B 11, 2000–2005 (1993)
https://doi.org/10.1116/1.586533
Analysis of highly ordered pyrolytic graphite step defects via scanning tunneling microscope
J. Vac. Sci. Technol. B 11, 2006–2011 (1993)
https://doi.org/10.1116/1.586534
Novel scheme for the preparation of transmission electron microscopy specimens with a focused ion beam
J. Vac. Sci. Technol. B 11, 2021–2024 (1993)
https://doi.org/10.1116/1.586537
Hydrogen plasma processing of GaAs and AlGaAs
Kent D. Choquette; R. S. Freund; M. Hong; H. S. Luftman; S. N. G. Chu; J. P. Mannaerts; R. C. Wetzel
J. Vac. Sci. Technol. B 11, 2025–2032 (1993)
https://doi.org/10.1116/1.586538
Ultraviolet‐ozone oxidation of GaAs(100) and InP(100)
J. Vac. Sci. Technol. B 11, 2033–2037 (1993)
https://doi.org/10.1116/1.586539
Identification of volatile products in low pressure hydrocarbon electron cyclotron resonance reactive ion etching of InP and GaAs
J. Vac. Sci. Technol. B 11, 2038–2045 (1993)
https://doi.org/10.1116/1.586540
Ion velocity distributions in helicon wave plasmas: Magnetic field and pressure effects
J. Vac. Sci. Technol. B 11, 2046–2056 (1993)
https://doi.org/10.1116/1.586541
p‐type ZnSe grown by molecular beam epitaxy with remote microwave plasma of N2
J. Vac. Sci. Technol. B 11, 2057–2061 (1993)
https://doi.org/10.1116/1.586542
Galvanomagnetic study of p‐Hg1−xCdxTe passivated surfaces
J. Vac. Sci. Technol. B 11, 2062–2066 (1993)
https://doi.org/10.1116/1.586543
Electron cyclotron resonance sputter removal of SiO2 on silicon wafers
J. Vac. Sci. Technol. B 11, 2067–2070 (1993)
https://doi.org/10.1116/1.586544
Influence of reactant transport on fluorine reactive ion etching of deep trenches in silicon
J. Vac. Sci. Technol. B 11, 2071–2080 (1993)
https://doi.org/10.1116/1.586545
Characterization of silicon dioxide and phosphosilicate glass deposited films
J. Vac. Sci. Technol. B 11, 2081–2089 (1993)
https://doi.org/10.1116/1.586546
Comparison of passivation films: The effect of thermal cycles and comparison of phosphorous doped oxide films
J. Vac. Sci. Technol. B 11, 2090–2095 (1993)
https://doi.org/10.1116/1.586547
Ellipsometric monitoring and control of the rapid thermal oxidation of silicon
J. Vac. Sci. Technol. B 11, 2096–2101 (1993)
https://doi.org/10.1116/1.586548
Ellipsometric determination of the thickness and refractive index of silicon films
J. Vac. Sci. Technol. B 11, 2102–2106 (1993)
https://doi.org/10.1116/1.586549
Selective and blanket copper chemical vapor deposition for ultra‐large‐scale integration
J. Vac. Sci. Technol. B 11, 2107–2113 (1993)
https://doi.org/10.1116/1.586550
Nanofabrication techniques for a 100 nm‐scale tungsten polycide gate structure
J. Vac. Sci. Technol. B 11, 2123–2126 (1993)
https://doi.org/10.1116/1.586553
Layer structure evaluation of multilayer x‐ray mirror by combination of focused ion beam etching and transmission electron microscopy
J. Vac. Sci. Technol. B 11, 2127–2129 (1993)
https://doi.org/10.1116/1.586554
Photo‐ and electron‐beam lithography sharing common stencil
J. Vac. Sci. Technol. B 11, 2132–2136 (1993)
https://doi.org/10.1116/1.586447
Temperature measurement for scanning tunnel microscope samples using a detachable thermocouple
J. Vac. Sci. Technol. B 11, 2137–2138 (1993)
https://doi.org/10.1116/1.586448
Marks for alignment and registration in projection electron lithography
R. C. Farrow; J. A. Liddle; S. D. Berger; H. A. Huggins; J. S. Kraus; R. M. Camarda; R. G. Tarascon; C. W. Jurgensen; R. R. Kola; L. Fetter
J. Vac. Sci. Technol. B 11, 2175–2178 (1993)
https://doi.org/10.1116/1.586451
Improvement of heterodyne alignment technique for x‐ray steppers
J. Vac. Sci. Technol. B 11, 2179–2182 (1993)
https://doi.org/10.1116/1.586452
Confocal filtering of the instantaneous image in scanned darkfield alignment
J. Vac. Sci. Technol. B 11, 2183–2190 (1993)
https://doi.org/10.1116/1.586453
Novel on‐axis interferometric alignment method with sub‐10 nm precision
J. Vac. Sci. Technol. B 11, 2191–2194 (1993)
https://doi.org/10.1116/1.586454
Focused‐ion beam induced deposition of copper
J. Vac. Sci. Technol. B 11, 2195–2199 (1993)
https://doi.org/10.1116/1.586455
Selective electroless plating on electron beam seeded nanostructures
J. Vac. Sci. Technol. B 11, 2204–2209 (1993)
https://doi.org/10.1116/1.586457
Modification of polymer surfaces and the fabrication of submicron‐scale functionalized structures by deep‐ultraviolet and electron‐beam lithography
J. Vac. Sci. Technol. B 11, 2210–2213 (1993)
https://doi.org/10.1116/1.586458
Characteristics of ion beam assisted etching of GaAs: Surface stoichiometry
J. Vac. Sci. Technol. B 11, 2214–2218 (1993)
https://doi.org/10.1116/1.586459
Resolution limits in electron‐beam induced tungsten deposition
J. Vac. Sci. Technol. B 11, 2219–2223 (1993)
https://doi.org/10.1116/1.586460
High‐resolution reactive ion etching and damage effects in the Si/GexSi1−x system
J. Vac. Sci. Technol. B 11, 2224–2228 (1993)
https://doi.org/10.1116/1.586461
Fabrication of silicon nanostructures with electron‐beam lithography using AlN as a dry‐etch durable resist
J. Vac. Sci. Technol. B 11, 2229–2232 (1993)
https://doi.org/10.1116/1.586462
Very low damage etching of GaAs
J. Vac. Sci. Technol. B 11, 2237–2243 (1993)
https://doi.org/10.1116/1.586464
Selectively dry gate recessed GaAs metal–semiconductor field‐effect transistors, high electron mobility transistors, and monolithic microwave integrated circuits
N. I. Cameron; S. Ferguson; M. R. S. Taylor; S. P. Beaumont; M. Holland; C. Tronche; M. Soulard; P. H. Ladbrooke
J. Vac. Sci. Technol. B 11, 2244–2248 (1993)
https://doi.org/10.1116/1.586465
Characterization of low energy ion‐induced damage using the multiple quantum well probe technique with an intervening superlattice
J. Vac. Sci. Technol. B 11, 2249–2253 (1993)
https://doi.org/10.1116/1.586466
Fabrication of parallel quantum wires in GaAs/AlGaAs heterostructures using AlAs etch stop layers
J. Vac. Sci. Technol. B 11, 2254–2257 (1993)
https://doi.org/10.1116/1.586467
Characteristics of selective reactive ion etching of InGaAs/InAlAs heterostructures using HBr plasma
J. Vac. Sci. Technol. B 11, 2258–2261 (1993)
https://doi.org/10.1116/1.586468
300 kHz pulse plasma etching of GaAs using a mixture of ClCH3 and H2
J. Vac. Sci. Technol. B 11, 2262–2265 (1993)
https://doi.org/10.1116/1.586886
Characteristics of in situ Cl2 etched/regrown GaAs/GaAs interfaces
J. Vac. Sci. Technol. B 11, 2266–2269 (1993)
https://doi.org/10.1116/1.586887
Etching on silicon membranes for sub‐0.25‐μm x‐ray mask manufacturing
J. Vac. Sci. Technol. B 11, 2270–2274 (1993)
https://doi.org/10.1116/1.586888
Controllable layer‐by‐layer etching of III–V compound semiconductors with an electron cyclotron resonance source
J. Vac. Sci. Technol. B 11, 2275–2279 (1993)
https://doi.org/10.1116/1.586889
Multilayer resist dry etching technology for deep submicron lithography
J. Vac. Sci. Technol. B 11, 2284–2287 (1993)
https://doi.org/10.1116/1.586891
Low‐damage electron‐beam‐assisted dry etching of GaAs and AlGaAs using electron cyclotron resonance plasma electron source
J. Vac. Sci. Technol. B 11, 2288–2293 (1993)
https://doi.org/10.1116/1.586892
Particle–particle interaction effects in image projection lithography systems
J. Vac. Sci. Technol. B 11, 2294–2298 (1993)
https://doi.org/10.1116/1.586893
Limits of low‐energy electron optics
J. Vac. Sci. Technol. B 11, 2299–2303 (1993)
https://doi.org/10.1116/1.586894
Large‐area electron‐beam source
J. Vac. Sci. Technol. B 11, 2304–2308 (1993)
https://doi.org/10.1116/1.586895
Effect of beam condition in variable‐shaped electron‐beam direct writing for 0.25 μm and below
J. Vac. Sci. Technol. B 11, 2319–2322 (1993)
https://doi.org/10.1116/1.586898
Continuous writing method for high speed electron‐beam direct writing system HL‐800D
J. Vac. Sci. Technol. B 11, 2323–2326 (1993)
https://doi.org/10.1116/1.586980
Oxygen processed field emission tips for microcolumn applications
J. Vac. Sci. Technol. B 11, 2327–2331 (1993)
https://doi.org/10.1116/1.586981
EL‐4, a new generation electron‐beam lithography system
H. C. Pfeiffer; D. E. Davis; W. A. Enichen; M. S. Gordon; T. R. Groves; J. G. Hartley; R. J. Quickle; J. D. Rockrohr; W. Stickel; E. V. Weber
J. Vac. Sci. Technol. B 11, 2332–2341 (1993)
https://doi.org/10.1116/1.586982
Spatial‐phase‐locked electron‐beam lithography: Initial test results
J. Vac. Sci. Technol. B 11, 2342–2345 (1993)
https://doi.org/10.1116/1.586983
Electron‐beam direct writing system EX‐8D employing character projection exposure method
K. Hattori; R. Yoshikawa; H. Wada; H. Kusakabe; T. Yamaguchi; S. Magoshi; A. Miyagaki; S. Yamasaki; T. Takigawa; M. Kanoh; S. Nishimura; H. Housai; S. Hashimoto
J. Vac. Sci. Technol. B 11, 2346–2351 (1993)
https://doi.org/10.1116/1.586984
Laboratory setup for projection electron lithography and a Monte Carlo simulation of scattering mask transmission
J. Vac. Sci. Technol. B 11, 2352–2356 (1993)
https://doi.org/10.1116/1.586985
Electron‐beam block exposure system for a 256 M dynamic random access memory
K. Sakamoto; S. Fueki; S. Yamazaki; T. Abe; K. Kobayashi; H. Nishino; T. Satoh; A. Takemoto; A. Ookura; M. Oono; S. Sago; Y. Oae; A. Yamada; H. Yasuda
J. Vac. Sci. Technol. B 11, 2357–2361 (1993)
https://doi.org/10.1116/1.586986
Integration of microstructures onto negative electron affinity cathodes: Fabrication and operation of an addressable negative electron affinity cathode
J. Vac. Sci. Technol. B 11, 2362–2366 (1993)
https://doi.org/10.1116/1.586987
Proximity effects in low‐energy electron‐beam lithography
J. Vac. Sci. Technol. B 11, 2367–2372 (1993)
https://doi.org/10.1116/1.586988
Multiple beam‐shaping diaphragm for efficient exposure of gratings
J. Vac. Sci. Technol. B 11, 2373–2377 (1993)
https://doi.org/10.1116/1.586989
Constructive three‐dimensional lithography with electron‐beam induced deposition for quantum effect devices
J. Vac. Sci. Technol. B 11, 2386–2389 (1993)
https://doi.org/10.1116/1.586991
Feasibility study of new graybeam writing strategies for raster scan mask generation
J. Vac. Sci. Technol. B 11, 2390–2396 (1993)
https://doi.org/10.1116/1.586992
Use of a variable shaped beam electron lithography system for diffractive optics components manufacturing
J. Vac. Sci. Technol. B 11, 2397–2399 (1993)
https://doi.org/10.1116/1.586993
Intelligent design splitting in the stencil mask technology used for electron‐ and ion‐beam lithography
J. Vac. Sci. Technol. B 11, 2400–2403 (1993)
https://doi.org/10.1116/1.586994
Edge roughness of a 200‐nm pitch resist pattern fabricated by ion projection lithography
J. Vac. Sci. Technol. B 11, 2404–2408 (1993)
https://doi.org/10.1116/1.586995
Projection ion beam lithography
H. Löschner; G. Stengl; A. Chalupka; J. Fegerl; R. Fischer; E. Hammel; G. Lammer; L. Malek; R. Nowak; C. Traher; H. Vonach; P. Wolf; R. W. Hill
J. Vac. Sci. Technol. B 11, 2409–2415 (1993)
https://doi.org/10.1116/1.586996
Focused‐ion‐beam damage‐etch patterning for isolation of quantum structures in AlGaAs/GaAs
J. Vac. Sci. Technol. B 11, 2416–2419 (1993)
https://doi.org/10.1116/1.586997
New characterization method of ion current‐density profile based on damage distribution of Ga+ focused‐ion beam implantation in GaAs
J. Vac. Sci. Technol. B 11, 2420–2426 (1993)
https://doi.org/10.1116/1.586998
Effects of focused ion beam reticle repair on optical lithography at i‐line and deep ultraviolet wavelengths
J. Vac. Sci. Technol. B 11, 2427–2431 (1993)
https://doi.org/10.1116/1.586999
Quasiperiodic nanostructures in focused ion beam deposited tungsten at high angles of incidence
J. Vac. Sci. Technol. B 11, 2436–2440 (1993)
https://doi.org/10.1116/1.587001
Investigations of artificial nanostructures and lithography techniques with a scanning probe microscope
U. A. Griesinger; C. Kaden; N. Lichtenstein; J. Hommel; G. Lehr; R. Bergmann; A. Menschig; H. Schweizer; H. Hillmer; H. W. P. Koops; J. Kretz; M. Rudolph
J. Vac. Sci. Technol. B 11, 2441–2445 (1993)
https://doi.org/10.1116/1.586643
Optimization of aerial image quality
J. Vac. Sci. Technol. B 11, 2446–2451 (1993)
https://doi.org/10.1116/1.586644
Time‐of‐flight electron spectrometer for voltage measurements on integrated circuits
J. Vac. Sci. Technol. B 11, 2452–2455 (1993)
https://doi.org/10.1116/1.586645
Metrology of high‐resolution resist structures on insulating substrates
E. Di Fabrizio; L. Grella; L. Luciani; M. Gentili; M. Baciocchi; M. Figliomeni; L. Mastrogiacomo; R. Maggiora; Q. Leonard; F. Cerrina; M. Molino; D. Powderly
J. Vac. Sci. Technol. B 11, 2456–2462 (1993)
https://doi.org/10.1116/1.586646
Metrology for replicated x‐ray masks using an electron‐beam machine
L. Luciani; E. Di Fabrizio; L. Grella; M. Baciocchi; M. Figliomeni; M. Gentili; L. Mastrogiacomo; R. Maggiora; A. Kraspenova; M. Reilly
J. Vac. Sci. Technol. B 11, 2463–2467 (1993)
https://doi.org/10.1116/1.586647
Real‐time latent image monitoring during holographic fabrication of submicron diffraction gratings
Jeffrey A. Gregus; Christian A. Green; Euijoon Yoon; Fred W. Ostermayer; Todd R. Hayes; Richard Pawelek; Richard A. Gottscho; S. Sohail H. Naqvi
J. Vac. Sci. Technol. B 11, 2468–2472 (1993)
https://doi.org/10.1116/1.586648
Line profile measurement with a scanning probe microscope
J. Vac. Sci. Technol. B 11, 2473–2476 (1993)
https://doi.org/10.1116/1.586649
Simulation of x‐ray generation based on electron trajectory calculation
J. Vac. Sci. Technol. B 11, 2477–2481 (1993)
https://doi.org/10.1116/1.586650
Fabrication of a novel split‐backgate transistor by in situ focused ion‐beam lithography and molecular‐beam epitaxial regrowth
J. Vac. Sci. Technol. B 11, 2493–2496 (1993)
https://doi.org/10.1116/1.586653
Micromachining in III–V semiconductors using wet photoelectrochemical etching
J. Vac. Sci. Technol. B 11, 2497–2501 (1993)
https://doi.org/10.1116/1.586654
Multiwavelength distributed Bragg reflector laser array fabricated using near field holographic printing with an electron‐beam generated phase grating mask
D. M. Tennant; T. L. Koch; J‐M. Verdiell; K. Feder; R. P. Gnall; U. Koren; M. G. Young; B. I. Miller; M. A. Newkirk; B. Tell
J. Vac. Sci. Technol. B 11, 2509–2513 (1993)
https://doi.org/10.1116/1.586656
Fabrication of curved mirrors for visible semiconductor lasers using electron‐beam lithography and chemically assisted ion‐beam etching
J. Vac. Sci. Technol. B 11, 2514–2518 (1993)
https://doi.org/10.1116/1.586657
Fabrication of sub‐10 nm structures by lift‐off and by etching after electron‐beam exposure of poly(methylmethacrylate) resist on solid substrates
J. Vac. Sci. Technol. B 11, 2519–2523 (1993)
https://doi.org/10.1116/1.586658
10 nm Si pillars fabricated using electron‐beam lithography, reactive ion etching, and HF etching
J. Vac. Sci. Technol. B 11, 2524–2527 (1993)
https://doi.org/10.1116/1.586659
Design and analysis of InAs/AlSb ballistic constrictions for high temperature operation and low gate leakage
J. Vac. Sci. Technol. B 11, 2528–2531 (1993)
https://doi.org/10.1116/1.586660
Self‐limiting oxidation of Si nanowires
J. Vac. Sci. Technol. B 11, 2532–2537 (1993)
https://doi.org/10.1116/1.586661
Integrated silicon process for microdynamic vacuum field emission cathodes
J. Vac. Sci. Technol. B 11, 2538–2543 (1993)
https://doi.org/10.1116/1.586662
Investigation of the longitudinal and lateral distribution of implantation induced damage in GaAs/InGaAs heterostructures
J. Vac. Sci. Technol. B 11, 2544–2547 (1993)
https://doi.org/10.1116/1.586663
Fabrication of freestanding structures and proposed applications in tunneling sensors
J. Vac. Sci. Technol. B 11, 2548–2551 (1993)
https://doi.org/10.1116/1.586621
Optical analysis of quantum confined Stark effect in overgrown InGaAs/InP quantum wires
J. Vac. Sci. Technol. B 11, 2556–2559 (1993)
https://doi.org/10.1116/1.586623
Multilayer resist process for asymmetric gate recess in field‐effect transistors
J. Vac. Sci. Technol. B 11, 2560–2564 (1993)
https://doi.org/10.1116/1.586624
New technique for computation and challenges for electron‐beam lithography
J. Vac. Sci. Technol. B 11, 2565–2569 (1993)
https://doi.org/10.1116/1.586625
Ultrahigh resolution magnetic force microscope tip fabricated using electron beam lithography
J. Vac. Sci. Technol. B 11, 2570–2573 (1993)
https://doi.org/10.1116/1.586626
Directly patterned low voltage planar tungsten lateral field emission structures
J. Vac. Sci. Technol. B 11, 2574–2578 (1993)
https://doi.org/10.1116/1.586627
Fabrication of mesoscopic structures by channeled ion implantation for the study of boundary scattering of electrons
J. Vac. Sci. Technol. B 11, 2579–2583 (1993)
https://doi.org/10.1116/1.586628
Fabrication and optical properties of InGaAs/InP quantum wires and dots with strong lateral quantization effects
J. Vac. Sci. Technol. B 11, 2584–2587 (1993)
https://doi.org/10.1116/1.586629
Fabrication of hard x‐ray phase zone plate by x‐ray lithography
A. A. Krasnoperova; J. Xiao; F. Cerrina; E. Di Fabrizio; L. Luciani; M. Figliomeni; M. Gentili; W. Yun; B. Lai; E. Gluskin
J. Vac. Sci. Technol. B 11, 2588–2591 (1993)
https://doi.org/10.1116/1.586630
Effects of low energy ion exposure on modulation‐doped GaAs heterostructures
J. Vac. Sci. Technol. B 11, 2592–2596 (1993)
https://doi.org/10.1116/1.586631
Determination of acid diffusion rate in a chemically amplified resist with scanning tunneling microscope lithography
J. Vac. Sci. Technol. B 11, 2597–2602 (1993)
https://doi.org/10.1116/1.586632
Fabrication of Y‐gate, submicron gate length GaAs metal–semiconductor field effect transistors
J. Vac. Sci. Technol. B 11, 2603–2606 (1993)
https://doi.org/10.1116/1.586633
Integrated approach to quantum dot fabrication
J. Vac. Sci. Technol. B 11, 2607–2611 (1993)
https://doi.org/10.1116/1.586634
High performance sub‐0.1 μm silicon n‐metal–oxide–semiconductor transistors with composite metal/polysilicon gates
S. A. Rishton; Y. J. Mii; D. P. Kern; Y. Taur; K. Y. Lee; T. Lii; K. Jenkins; D. Quinlan; T. Brown, Jr.; D. Danner; F. Sewell; M. Polcari
J. Vac. Sci. Technol. B 11, 2612–2614 (1993)
https://doi.org/10.1116/1.586635
Electron‐beam lithography for advanced device prototyping: Process tool metrology
M. G. Rosenfield; M. G. R. Thomson; P. J. Coane; K. T. Kwietniak; J. Keller; D. P. Klaus; R. P. Volant; C. R. Blair; K. S. Tremaine; T. H. Newman; F. J. Hohn
J. Vac. Sci. Technol. B 11, 2615–2620 (1993)
https://doi.org/10.1116/1.586636
Ridge‐waveguide sidewall‐grating distributed feedback structures fabricated by x‐ray lithography
J. Vac. Sci. Technol. B 11, 2621–2624 (1993)
https://doi.org/10.1116/1.586637
Fabrication of 100 nm T‐gates for monolithic microwave integrated circuits using x‐ray lithography
J. Vac. Sci. Technol. B 11, 2625–2628 (1993)
https://doi.org/10.1116/1.586638
Focused ion beam interaction with a shallow two‐dimensional electron gas
J. Vac. Sci. Technol. B 11, 2629–2632 (1993)
https://doi.org/10.1116/1.586639
Diffraction gratings for measuring slow mode surface plasmon polaritons
J. Vac. Sci. Technol. B 11, 2633–2636 (1993)
https://doi.org/10.1116/1.586640
Nanofabrication of photonic lattice structures in GaAs/AlGaAs
J. Vac. Sci. Technol. B 11, 2637–2640 (1993)
https://doi.org/10.1116/1.586641
Low‐loss beamwidth transformers on InP with reduced requirements on lithographic resolution
J. Vac. Sci. Technol. B 11, 2641–2644 (1993)
https://doi.org/10.1116/1.586642
Etched‐quartz fabrication issues for a 0.25 μm phase‐shifted dynamic random access memory application
J. Vac. Sci. Technol. B 11, 2645–2650 (1993)
https://doi.org/10.1116/1.586578
Mask assisted off‐axis illumination technique for random logic
J. Vac. Sci. Technol. B 11, 2651–2658 (1993)
https://doi.org/10.1116/1.586579
Edge location errors in Cr‐less and rim‐type phase‐shifting lithography
J. Vac. Sci. Technol. B 11, 2659–2664 (1993)
https://doi.org/10.1116/1.586580
Evaluation of repair phase and size tolerance for a phase‐shift mask
J. Vac. Sci. Technol. B 11, 2665–2668 (1993)
https://doi.org/10.1116/1.586581
Optical projection system for gigabit dynamic random access memories
J. Vac. Sci. Technol. B 11, 2675–2679 (1993)
https://doi.org/10.1116/1.586583
Direct aerial image measurement as a method of testing high numerical aperture microlithographic lenses
J. Vac. Sci. Technol. B 11, 2686–2691 (1993)
https://doi.org/10.1116/1.586585
Performance of 0.2 μm optical lithography using KrF and ArF excimer laser sources
Kazuhiro Yamashita; Masayuki Endo; Masaru Sasago; Noboru Nomura; Hiroyuki Nagano; Shinichi Mizuguchi; Takuhiro Ono; Takeo Sato
J. Vac. Sci. Technol. B 11, 2692–2696 (1993)
https://doi.org/10.1116/1.586586
Advanced dynamic process simulation for an excimer laser lithography
J. Vac. Sci. Technol. B 11, 2714–2719 (1993)
https://doi.org/10.1116/1.586590
Evaluation of depth‐of‐focus in photolithography at 193 and 248 nm for feature sizes of 0.25 μm and below
J. Vac. Sci. Technol. B 11, 2720–2724 (1993)
https://doi.org/10.1116/1.586591
Process issue improvement of surface image transfer technique: Depth‐of‐focus characteristics and their comparison with simulation results
J. Vac. Sci. Technol. B 11, 2725–2732 (1993)
https://doi.org/10.1116/1.586592
Reduction and elimination of proximity effects
J. Vac. Sci. Technol. B 11, 2733–2740 (1993)
https://doi.org/10.1116/1.586593
Analytical evaluation of the energy deposition function in electron‐beam lithography in the case of a composite substrate
J. Vac. Sci. Technol. B 11, 2754–2757 (1993)
https://doi.org/10.1116/1.586596
Two methods of experimental evaluation of long‐range proximity function components in electron‐beam lithography
J. Vac. Sci. Technol. B 11, 2758–2761 (1993)
https://doi.org/10.1116/1.586597
Fast proximity effect correction: An extension of PYRAMID for thicker resists
J. Vac. Sci. Technol. B 11, 2762–2767 (1993)
https://doi.org/10.1116/1.586598
Chemical amplification electron beam positive resist process free from surface insoluble layer
Takeshi Fujino; Hiroshi Maeda; Teruhiko Kumada; Koichi Moriizumi; Shigeru Kubota; Hiroshi Koezuka; Hiroaki Morimoto; Yaichiro Watakabe; Natfuro Tsubouchi
J. Vac. Sci. Technol. B 11, 2773–2778 (1993)
https://doi.org/10.1116/1.586600
Single‐layer chemically amplified photoresists for 193‐nm lithography
G. M. Wallraff; R. D. Allen; W. D. Hinsberg; C. F. Larson; R. D. Johnson; R. DiPietro; G. Breyta; N. Hacker; R. R. Kunz
J. Vac. Sci. Technol. B 11, 2783–2788 (1993)
https://doi.org/10.1116/1.586602
New silicon‐rich silylating reagents for dry‐developed positive‐tone deep‐ultraviolet lithography
J. Vac. Sci. Technol. B 11, 2789–2793 (1993)
https://doi.org/10.1116/1.586603
Water soluble conducting polyanilines: Applications in lithography
J. Vac. Sci. Technol. B 11, 2794–2797 (1993)
https://doi.org/10.1116/1.586604
Evaluation and application of a very high performance chemically amplified resist for electron‐beam lithography
J. Vac. Sci. Technol. B 11, 2807–2811 (1993)
https://doi.org/10.1116/1.586606
Development of positive electron‐beam resist for 50 kV electron‐beam direct‐writing lithography
J. Vac. Sci. Technol. B 11, 2812–2817 (1993)
https://doi.org/10.1116/1.586607
Self‐assembled monolayer electron‐beam resists on GaAs and SiO2
M. J. Lercel; R. C. Tiberio; P. F. Chapman; H. G. Craighead; C. W. Sheen; A. N. Parikh; D. L. Allara
J. Vac. Sci. Technol. B 11, 2823–2828 (1993)
https://doi.org/10.1116/1.586609
Effect of low‐solubility surface layer on development of AZ‐PF514
J. Vac. Sci. Technol. B 11, 2829–2833 (1993)
https://doi.org/10.1116/1.586610
Patterning of x‐ray masks using the negative‐acting resist P(SI‐CMS)
D. A. Mixon; A. E. Novembre; W. W. Tai; C. W. Jurgensen; J. Frackoviak; L. E. Trimble; R. R. Kola; G. K. Celler
J. Vac. Sci. Technol. B 11, 2834–2838 (1993)
https://doi.org/10.1116/1.586611
Optimization design program for chemically amplified resist process
J. Vac. Sci. Technol. B 11, 2845–2849 (1993)
https://doi.org/10.1116/1.586613
Soft x‐ray photochemistry of chemisorbed self‐assembled monolayers
J. Vac. Sci. Technol. B 11, 2850–2854 (1993)
https://doi.org/10.1116/1.586614
Dissolution rate properties of three‐component deep‐ultraviolet positive photoresists
James W. Thackeray; Mark Denison; Theodore H. Fedynyshyn; Jacque Georger; J. Michael Mori; George W. Orsula
J. Vac. Sci. Technol. B 11, 2855–2861 (1993)
https://doi.org/10.1116/1.586615
Simulation of locally enhanced three‐dimensional diffusion in chemically amplified resists
J. Vac. Sci. Technol. B 11, 2862–2866 (1993)
https://doi.org/10.1116/1.586616
Insolubilization mechanism of chemically amplified negative photoresists
Atsumi Yamaguchi; Shinji Kishimura; Kouichiro Tsujita; Hiroaki Morimoto; Katsuhiro Tsukamoto; Hitoshi Nagata
J. Vac. Sci. Technol. B 11, 2867–2871 (1993)
https://doi.org/10.1116/1.586617
Study of electron beam patterning of resist on tungsten x‐ray masks
K. D. Cummings; D. J. Resnick; J. Frackoviak; R. R. Kola; L. E. Trimble; B. Grant; S. Silverman; L. Haas; B. Jennings
J. Vac. Sci. Technol. B 11, 2872–2875 (1993)
https://doi.org/10.1116/1.586618
Effect of mask absorber thickness on x‐ray exposure latitude and resolution
J. Vac. Sci. Technol. B 11, 2881–2887 (1993)
https://doi.org/10.1116/1.586620
Overlay performance of x‐ray steppers in IBM Advance Lithography Facility
J. Vac. Sci. Technol. B 11, 2888–2896 (1993)
https://doi.org/10.1116/1.586556
Sub‐half‐micron metal–oxide–semiconductor device fabrication using a compact synchrotron radiation lithography system
J. Vac. Sci. Technol. B 11, 2897–2901 (1993)
https://doi.org/10.1116/1.586557
Experimental study of aerial images in x‐ray lithography
J. Vac. Sci. Technol. B 11, 2902–2905 (1993)
https://doi.org/10.1116/1.586558
Fabrication of flip‐bonded mesa masks for x‐ray lithography
J. Vac. Sci. Technol. B 11, 2906–2909 (1993)
https://doi.org/10.1116/1.586559
Fabrication of high performance 512K static‐random access memories in 0.25 μm complementary metal–oxide semiconductor technology using x‐ray lithography
R. Viswanathan; D. Seeger; A. Bright; T. Bucelot; A. Pomerene; K. Petrillo; P. Blauner; P. Agnello; J. Warlaumont; J. Conway; D. Patel
J. Vac. Sci. Technol. B 11, 2910–2919 (1993)
https://doi.org/10.1116/1.586560
X‐ray mask membrane motion in narrow gap lithography: Hydrodynamic model and experiment
J. Vac. Sci. Technol. B 11, 2920–2925 (1993)
https://doi.org/10.1116/1.586561
Repair of soft‐x‐ray optical elements by stripping and redeposition of Mo/Si reflective coatings
J. Vac. Sci. Technol. B 11, 2926–2929 (1993)
https://doi.org/10.1116/1.586562
Development of an electron‐beam process for the fabrication of x‐ray nanomasks
M. Gentili; L. Grella; E. Di Fabrizio; L. Luciani; M. Baciocchi; M. Figliomeni; R. Maggiora; L. Mastrogiacomo; F. Cerrina
J. Vac. Sci. Technol. B 11, 2938–2942 (1993)
https://doi.org/10.1116/1.586564
Pattern formation in amorphous WNx by low temperature electron cyclotron resonance etching for fabrication of x‐ray mask
J. Vac. Sci. Technol. B 11, 2943–2946 (1993)
https://doi.org/10.1116/1.586565
Stress and microstructure of sputter‐deposited thin films: Molecular dynamics simulations and experiment
J. Vac. Sci. Technol. B 11, 2947–2952 (1993)
https://doi.org/10.1116/1.586566
Practical considerations in x‐ray mask mounting methodology
J. Vac. Sci. Technol. B 11, 2953–2957 (1993)
https://doi.org/10.1116/1.586567
Resolution limits and process latitude of x‐ray mask fabrication
J. Vac. Sci. Technol. B 11, 2958–2963 (1993)
https://doi.org/10.1116/1.586568
Defect coverage profile and propagation of roughness of sputter‐deposited Mo/Si multilayer coating for extreme ultraviolet projection lithography
J. Vac. Sci. Technol. B 11, 2964–2970 (1993)
https://doi.org/10.1116/1.586569
X‐ray mask replication using square synchrotron radiation illumination
J. Vac. Sci. Technol. B 11, 2971–2975 (1993)
https://doi.org/10.1116/1.586570
Performance of a wide‐field flux delivery system for synchrotron x‐ray lithography
J. Vac. Sci. Technol. B 11, 2976–2980 (1993)
https://doi.org/10.1116/1.586571
Simultaneous optimization of spectrum, spatial coherence, gap, feature bias, and absorber thickness in synchrotron‐based x‐ray lithography
J. Vac. Sci. Technol. B 11, 2981–2985 (1993)
https://doi.org/10.1116/1.586572
Soft x‐ray production from laser produced plasmas for lithography applications
J. Vac. Sci. Technol. B 11, 2986–2989 (1993)
https://doi.org/10.1116/1.586573
Low stress and optically transparent chromium oxide layer for x‐ray mask making
J. Vac. Sci. Technol. B 11, 2990–2993 (1993)
https://doi.org/10.1116/1.586574
X‐ray stepper aiming at 0.2 μm synchrotron orbital radiation lithography
Norio Uchida; Osamu Kuwabara; Yoriyuki Ishibashi; Nobutaka Kikuiri; Ryoichi Hirano; Jun Nishida; Takeshi Nishizaka; Yukiko Kikuchi; Hisakazu Yoshino
J. Vac. Sci. Technol. B 11, 2997–3002 (1993)
https://doi.org/10.1116/1.586576
Polycapillary collimator for point source proximity x‐ray lithography
J. Vac. Sci. Technol. B 11, 3003–3007 (1993)
https://doi.org/10.1116/1.586577
Evaluation of beryllium foils for x‐ray lithography beamlines
J. Vac. Sci. Technol. B 11, 3008–3011 (1993)
https://doi.org/10.1116/1.586885
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Heating of photocathode via field emission and radiofrequency pulsed heating: Implication toward breakdown
Ryo Shinohara, Soumendu Bagchi, et al.