Skip Nav Destination
Issues
May 1993
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
Selective regrowth of InP and GaAs by organometallic vapor phase epitaxy and metalorganic molecular beam epitaxy around dry etched features
J. Vac. Sci. Technol. B 11, 536–541 (1993)
https://doi.org/10.1116/1.586796
Influence of substrate temperature on the growth of InGaAs layers on (111)B GaAs
J. Vac. Sci. Technol. B 11, 542–545 (1993)
https://doi.org/10.1116/1.586797
Dry surface cleaning of plasma‐etched high electron mobility transistors
S. J. Pearton; F. Ren; A. Katz; U. K. Chakrabarti; E. Lane; W. S. Hobson; R. F. Kopf; C. R. Abernathy; C. S. Wu; D. A. Bohling; J. C. Ivankovits
J. Vac. Sci. Technol. B 11, 546–550 (1993)
https://doi.org/10.1116/1.586798
Dry etching of CdTe/GaAs epilayers using CH4/H2 gas mixtures
J. Vac. Sci. Technol. B 11, 551–555 (1993)
https://doi.org/10.1116/1.586799
Digital etching of III–V multilayered structures combined with laser ionization mass spectroscopy: Photon‐assisted depth profiling
J. Vac. Sci. Technol. B 11, 556–561 (1993)
https://doi.org/10.1116/1.586800
Surface morphology and quality of strained InGaAs grown by molecular‐beam epitaxy on GaAs
J. Vac. Sci. Technol. B 11, 562–566 (1993)
https://doi.org/10.1116/1.586801
Effect of substrate temperature on ultrahigh vacuum interfaces of indium oxide/GaAs(110)
J. Vac. Sci. Technol. B 11, 567–571 (1993)
https://doi.org/10.1116/1.586802
Annealing behavior of Au(Te)/n‐GaAs contacts
A. Piotrowska; E. Kamińska; X. W. Lin; Z. Liliental‐Weber; J. Washburn; E. Weber; S. Gierlotka; J. Adamczewska; S. Kwiatkowski; A. Turos
J. Vac. Sci. Technol. B 11, 572–580 (1993)
https://doi.org/10.1116/1.586803
Lateral straggle of Si and Be focused‐ion beam implanted in GaAs
J. Vac. Sci. Technol. B 11, 581–586 (1993)
https://doi.org/10.1116/1.586804
Photoluminescence and Hall characterization of pseudomorphic GaAs/InGaAs/AlGaAs heterostructures grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 593–600 (1993)
https://doi.org/10.1116/1.586806
Determination of the mechanical stress in plasma enhanced chemical vapor deposited SiO2 and SiN layers
J. Vac. Sci. Technol. B 11, 614–617 (1993)
https://doi.org/10.1116/1.586809
Selective reactive ion etching in SiCl4/SiF4 plasmas for gate recess in GaAs/AlGaAs modulation‐doped field effect transistors
D. G. Ballegeer; S. Agarwala; M. Tong; K. Nummila; A. A. Ketterson; I. Adesida; J. Griffin; M. Spencer
J. Vac. Sci. Technol. B 11, 618–627 (1993)
https://doi.org/10.1116/1.586810
Fabrication of nanostructures with multilevel architecture
J. Vac. Sci. Technol. B 11, 628–633 (1993)
https://doi.org/10.1116/1.586811
Integrated electrostatically resonant scan tip for an atomic force microscope
J. Vac. Sci. Technol. B 11, 634–641 (1993)
https://doi.org/10.1116/1.586812
Fabrication and characterization of electron beam evaporated silicon field emitter arrays
J. Vac. Sci. Technol. B 11, 642–646 (1993)
https://doi.org/10.1116/1.586813
Influences of gases on the field emission
J. Vac. Sci. Technol. B 11, 647–650 (1993)
https://doi.org/10.1116/1.586814
Local modification of HF‐treated silicon (100) surface and its characterization by scanning tunneling microscopy and spectroscopy
J. Vac. Sci. Technol. B 11, 651–657 (1993)
https://doi.org/10.1116/1.586815
Properties of electromagnetic fields in x‐ray lithographic masks: Guided modes and beam propagation calculus
J. Vac. Sci. Technol. B 11, 667–680 (1993)
https://doi.org/10.1116/1.586817
Fluorescence behavior of diazonaphthoquinone‐type photoresist materials
J. Vac. Sci. Technol. B 11, 688–698 (1993)
https://doi.org/10.1116/1.586774
Cleaning of silicon surfaces by argon microwave multipolar plasmas excited by distributed electron cyclotron resonance
J. Vac. Sci. Technol. B 11, 699–708 (1993)
https://doi.org/10.1116/1.586775
Electronic defects induced in p‐ and n‐type silicon by SF6 plasma etching
J. Vac. Sci. Technol. B 11, 709–716 (1993)
https://doi.org/10.1116/1.586776
Two precursor model for low‐pressure chemical vapor deposition of silicon dioxide from tetraethylorthosilicate
J. Vac. Sci. Technol. B 11, 720–726 (1993)
https://doi.org/10.1116/1.586778
Kinetics and mechanism for desorption of H2O from spin‐on‐glass
J. Vac. Sci. Technol. B 11, 727–733 (1993)
https://doi.org/10.1116/1.586779
Silane reduced chemical vapor deposition tungsten as a nucleating step in blanket W
J. Vac. Sci. Technol. B 11, 734–743 (1993)
https://doi.org/10.1116/1.586780
Evaluation of in situ formed W–Ti and MoSi2 as a diffusion barrier to Al for CoSi2 silicided contact
J. Vac. Sci. Technol. B 11, 744–751 (1993)
https://doi.org/10.1116/1.586781
Epitaxial surface of NiSi2 (001) studied with low‐energy electron diffraction and scanning tunneling microscopy
J. Vac. Sci. Technol. B 11, 752–755 (1993)
https://doi.org/10.1116/1.586782
Thermal stability of Mo–Al Schottky metallizations on n‐GaAs
J. Vac. Sci. Technol. B 11, 756–762 (1993)
https://doi.org/10.1116/1.586783
Patterning of C60 films
A. V. Hamza; M. Balooch; R. J. Tench; M. A. Schildbach; R. A. Hawley‐Fedder; H. W. H. Lee; C. McConaghy
J. Vac. Sci. Technol. B 11, 763–765 (1993)
https://doi.org/10.1116/1.586784
Scanning tunneling microscopy study of molecular‐beam epitaxial growth of GaAs on GaAs(001)
J. Vac. Sci. Technol. B 11, 775–778 (1993)
https://doi.org/10.1116/1.586786
Molecular‐beam epitaxy on exact and vicinal GaAs(1̄1̄1̄) substrates
J. Vac. Sci. Technol. B 11, 779–782 (1993)
https://doi.org/10.1116/1.586787
Arsenic reflection from GaAs and AlGaAs surfaces during molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 783–786 (1993)
https://doi.org/10.1116/1.586788
New selective molecular‐beam epitaxial growth method for direct formation of GaAs quantum dots
J. Vac. Sci. Technol. B 11, 787–790 (1993)
https://doi.org/10.1116/1.586789
Molecular‐beam epitaxial growth condition dependence of reflection high‐energy electron diffraction dampening and quantum well photoluminescence
J. Vac. Sci. Technol. B 11, 791–794 (1993)
https://doi.org/10.1116/1.586790
Arsenic cluster engineering for excitonic electro‐optics
J. Vac. Sci. Technol. B 11, 795–797 (1993)
https://doi.org/10.1116/1.586791
Structural and electrical properties of low temperature GaInAs
J. Vac. Sci. Technol. B 11, 798–801 (1993)
https://doi.org/10.1116/1.586792
Improved optical properties of low temperature molecular‐beam epitaxially grown AlGaAs by In incorporation
J. Vac. Sci. Technol. B 11, 802–804 (1993)
https://doi.org/10.1116/1.586793
Effect of structural and chemical parameters on the optical properties of highly strained AlGaAs/InGaAs/AlGaAs quantum wells
J. Vac. Sci. Technol. B 11, 805–808 (1993)
https://doi.org/10.1116/1.586794
Multiple quantum wells consisting of InAs/GaAs short‐period strained‐layer superlattice wells for 1.3–1.55 μm photonic applications
J. Vac. Sci. Technol. B 11, 809–812 (1993)
https://doi.org/10.1116/1.586795
Band offset determination in parabolic and triangular quantum wells of GaAs/AlGaAs and GaInAs/AlInAs
J. Vac. Sci. Technol. B 11, 813–816 (1993)
https://doi.org/10.1116/1.586752
Growth and properties of AlInAs–GaInAs alloys and quantum wells on (110) InP
J. Vac. Sci. Technol. B 11, 817–819 (1993)
https://doi.org/10.1116/1.586753
Migration‐enhanced epitaxial growth of GaAs on Si using (GaAs)1−x(Si2)x/GaAs strained‐layer superlattice buffer layers
J. Vac. Sci. Technol. B 11, 820–822 (1993)
https://doi.org/10.1116/1.586754
Molecular‐beam epitaxial growth of arsenide/phosphide heterostructures using valved, solid group V sources
J. Vac. Sci. Technol. B 11, 823–825 (1993)
https://doi.org/10.1116/1.586755
Optimization of interfaces in arsenide–phosphide compounds grown by gas source molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 826–829 (1993)
https://doi.org/10.1116/1.586756
Growth of GaxIn1−xP/Ga0.5In0.5P multiple‐quantum wires by strain induced lateral layer ordering process
J. Vac. Sci. Technol. B 11, 830–832 (1993)
https://doi.org/10.1116/1.586757
Measurement of indium desorption activation energy from InP layers by laser induced fluorescence
J. Vac. Sci. Technol. B 11, 833–835 (1993)
https://doi.org/10.1116/1.586758
Nature and origin of residual impurities in high‐purity GaAs and InP grown by chemical beam epitaxy
J. Vac. Sci. Technol. B 11, 836–839 (1993)
https://doi.org/10.1116/1.586759
Interface and relaxation properties of chemical beam epitaxy grown GaP/GaAs structures
J. Vac. Sci. Technol. B 11, 843–846 (1993)
https://doi.org/10.1116/1.586761
Chemical beam epitaxial growth of InP, InGaP, and InAs heterojunctions using triethylindium and bisphosphinoethane
J. Vac. Sci. Technol. B 11, 847–850 (1993)
https://doi.org/10.1116/1.586762
Chemical beam epitaxy of InxAs1−xP/InP strained single and multiquantum well structures
J. Vac. Sci. Technol. B 11, 851–853 (1993)
https://doi.org/10.1116/1.586763
Characterization of GaAs/GaAsP strained multiple quantum wells grown by gas‐source molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 854–856 (1993)
https://doi.org/10.1116/1.586764
Gas‐source molecular‐beam epitaxy of InGaP and GaAs on strained‐relaxed GexSi1−x/Si
J. Vac. Sci. Technol. B 11, 857–860 (1993)
https://doi.org/10.1116/1.586765
Optimum growth temperature determination for GaInSb/InAs strained layer superlattices
J. Vac. Sci. Technol. B 11, 861–863 (1993)
https://doi.org/10.1116/1.586766
Molecular‐beam epitaxial growth of high‐mobility n‐GaSb
J. Vac. Sci. Technol. B 11, 864–867 (1993)
https://doi.org/10.1116/1.586767
On the interface structure in InAs/AlSb quantum wells grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 868–871 (1993)
https://doi.org/10.1116/1.586768
Molecular‐beam epitaxial growth of InSb on GaAs and Si for infrared detector applications
J. Vac. Sci. Technol. B 11, 872–874 (1993)
https://doi.org/10.1116/1.586769
Ultraviolet quantum well structures based on ZnS/ZnS1−xSex and ZnS/Zn1−xCdxS multilayers grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 875–877 (1993)
https://doi.org/10.1116/1.586770
Low‐temperature epitaxial growth of Zn chalcogenides on GaAs(001) by postheated molecular beams
J. Vac. Sci. Technol. B 11, 878–880 (1993)
https://doi.org/10.1116/1.586771
Molecular‐beam epitaxy investigation of interface disorder effects in magnetic II–VI quantum wells
W. E. Hagston; P. Harrison; J. H. C. Hogg; S. Jackson; J. E. Nicholls; T. Stirner; B. Lunn; D. E. Ashenford
J. Vac. Sci. Technol. B 11, 881–884 (1993)
https://doi.org/10.1116/1.586772
Enhancement of Hall mobility in coupled δ‐doped layers grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 885–888 (1993)
https://doi.org/10.1116/1.586773
On the breakdown of layer‐by‐layer growth and the spontaneous nucleation of misfit dislocations in molecular‐beam epitaxially grown GeSi/Si
J. Vac. Sci. Technol. B 11, 889–891 (1993)
https://doi.org/10.1116/1.586730
Deep level transient spectroscopy and admittance spectroscopy of Si1−xGex/Si grown by gas‐source molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 892–894 (1993)
https://doi.org/10.1116/1.586731
Luminescence from Si1−xGex/Si quantum wells grown by Si molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 895–898 (1993)
https://doi.org/10.1116/1.586732
Photoluminescence properties of strained molecular‐beam epitaxy Si1−xGex/Si multiquantum wells
J. Vac. Sci. Technol. B 11, 899–901 (1993)
https://doi.org/10.1116/1.586733
Molecular‐beam epitaxial growth of boron‐doped GaAs films
J. Vac. Sci. Technol. B 11, 902–904 (1993)
https://doi.org/10.1116/1.586734
Cross‐sectional imaging of doped layers in epitaxial gallium arsenide films by scanning tunneling microscopy
J. Vac. Sci. Technol. B 11, 908–911 (1993)
https://doi.org/10.1116/1.586736
Amphoteric doping of Si in InAlAs/InGaAs/InP(311)A heterostructures grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 912–914 (1993)
https://doi.org/10.1116/1.586737
Growth of high‐quality p‐type GaAs epitaxial layers using carbon tetrabromide by gas source molecular‐beam epitaxy and molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 915–918 (1993)
https://doi.org/10.1116/1.586738
Electron intersubband normal incidence absorption in InGaAs/GaAs quantum wells*
J. Vac. Sci. Technol. B 11, 922–925 (1993)
https://doi.org/10.1116/1.586740
Low growth temperature AlGaAs current blocking layers for use in surface normal optoelectronic devices
J. Vac. Sci. Technol. B 11, 926–928 (1993)
https://doi.org/10.1116/1.586741
Optimization of molecular beam epitaxy grown pin multiple quantum well electroabsorption modulators for the 1.5‐μm wavelength region
J. Vac. Sci. Technol. B 11, 929–931 (1993)
https://doi.org/10.1116/1.586742
Strain‐relaxed InGaAs buffer layers grown by molecular‐beam epitaxy for 1.3 μm Fabry–Pérot optical modulators
J. Vac. Sci. Technol. B 11, 932–934 (1993)
https://doi.org/10.1116/1.586743
High‐speed λ=1.3 μm metal–semiconductor–metal photodetectors on GaAs
J. Vac. Sci. Technol. B 11, 938–940 (1993)
https://doi.org/10.1116/1.586745
Quantum well GaAs/AlGaAs shallow‐donor far‐infrared photoconductors grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 941–944 (1993)
https://doi.org/10.1116/1.586746
Strained layer single quantum well double‐heterostructure optoelectronic switching laser
J. Vac. Sci. Technol. B 11, 945–947 (1993)
https://doi.org/10.1116/1.586747
Molecular‐beam epitaxy growth of semiconductor heterostructure optical converter lasers using the InGaAs/AlGaAs materials system
J. Vac. Sci. Technol. B 11, 948–951 (1993)
https://doi.org/10.1116/1.586748
Characteristics of modulation‐doped quantum well lasers grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 952–954 (1993)
https://doi.org/10.1116/1.586749
Blue/green light emitting diodes and laser diodes based on II–VI heterostructures grown on predeposited GaAs buffer layers
J. Ren; D. B. Eason; Y. Lansari; Z. Yu; K. A. Bowers; C. Boney; B. Sneed; J. W. Cook, Jr.; J. F. Schetzina; M. W. Koch; G. W. Wicks
J. Vac. Sci. Technol. B 11, 955–957 (1993)
https://doi.org/10.1116/1.586750
Molecular‐beam epitaxial growth and characterization of inverted, pulse‐doped AlGaAs/InGaAs/GaAs transistor structures
J. Vac. Sci. Technol. B 11, 962–964 (1993)
https://doi.org/10.1116/1.586899
Reproducible growth and application of AlAs/GaAs double barrier resonant tunneling diodes
J. Vac. Sci. Technol. B 11, 965–968 (1993)
https://doi.org/10.1116/1.586900
Comparison of pnp and npn InGaAlAs/InGaAs heterojunction bipolar transistors
J. Vac. Sci. Technol. B 11, 969–971 (1993)
https://doi.org/10.1116/1.586901
Cryogenic and high temperature operation of Al0.52In0.48P/In0.2Ga0.8As high electron mobility transistors
J. Vac. Sci. Technol. B 11, 976–978 (1993)
https://doi.org/10.1116/1.586903
Molecular‐beam epitaxially grown InP/InGaAsP heterostructure for inversion‐channel devices
J. Vac. Sci. Technol. B 11, 979–981 (1993)
https://doi.org/10.1116/1.586904
Application of an in situ hydrogen plasma to the epitaxial regrowth of InP grown by molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 985–988 (1993)
https://doi.org/10.1116/1.586906
Dry etching of GaAs and AlGaAs by Cl2 in molecular beam epitaxy system
J. Vac. Sci. Technol. B 11, 989–991 (1993)
https://doi.org/10.1116/1.586907
Low temperature nitridation of silicon by direct ammonia nitridation in a molecular‐beam epitaxy reactor
T. K. Higman; R. T. Fayfield; M. S. Hagedorn; K. H. Lee; S. A. Campbell; J. N. Baillargeon; K. Y. Cheng
J. Vac. Sci. Technol. B 11, 992–993 (1993)
https://doi.org/10.1116/1.586908
Variations in substrate temperature induced by molecular‐beam epitaxial growth on radiatively heated substrates
J. Vac. Sci. Technol. B 11, 994–997 (1993)
https://doi.org/10.1116/1.586909
Wafer‐scale temperature mapping for molecular beam epitaxy and chemical beam epitaxy
J. Vac. Sci. Technol. B 11, 998–1002 (1993)
https://doi.org/10.1116/1.586910
Comparison of optical pyrometry and infrared transmission measurements on indium‐free mounted substrates during molecular‐beam epitaxial growth
J. Vac. Sci. Technol. B 11, 1003–1006 (1993)
https://doi.org/10.1116/1.586856
Semiconductor substrate temperature measurement by diffuse reflectance spectroscopy in molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 1007–1010 (1993)
https://doi.org/10.1116/1.586857
In situ laser light scattering for monitoring III–V semiconductor film growth by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 1011–1013 (1993)
https://doi.org/10.1116/1.586858
Laser light scattering detection of InGaAs strained layer relaxation during molecular‐beam epitaxial growth
J. Vac. Sci. Technol. B 11, 1014–1017 (1993)
https://doi.org/10.1116/1.586859
Molecular‐beam epitaxy flux transient monitoring and correction using in situ reflection mass spectrometry
J. Vac. Sci. Technol. B 11, 1018–1022 (1993)
https://doi.org/10.1116/1.586860
Detection and reduction of indium segregation during molecular‐beam epitaxial growth of InGaAs/GaAs using in situ reflection mass spectrometry
J. Vac. Sci. Technol. B 11, 1023–1026 (1993)
https://doi.org/10.1116/1.586861
Process control system for improved run‐to‐run control of molecular‐beam epitaxial growth of GaAs/AlxGa1−xAs heterostructures
J. Vac. Sci. Technol. B 11, 1027–1031 (1993)
https://doi.org/10.1116/1.586862
Reactions between molten aluminum and pyrolytic boron nitride crucibles
A. J. SpringThorpe; A. Majeed; S. J. Ingrey; G. M. Smith; I. C. Bassignana; D. Macquistan; J. T. Szymanski
J. Vac. Sci. Technol. B 11, 1032–1035 (1993)
https://doi.org/10.1116/1.587002
Equilibrium gas‐phase composition of cracked AsH3 and PH3
J. Vac. Sci. Technol. B 11, 1041–1044 (1993)
https://doi.org/10.1116/1.587004
Generation of fast‐switching As2 and P2 beams from AsH3 and PH3 for gas‐source molecular‐beam epitaxial growth of InGaAs/InP multiple quantum well and superlattice structures
S. L. Jackson; J. N. Baillargeon; A. P. Curtis; X. Liu; J. E. Baker; J. I. Malin; K. C. Hsieh; S. G. Bishop; K. Y. Cheng; G. E. Stillman
J. Vac. Sci. Technol. B 11, 1045–1049 (1993)
https://doi.org/10.1116/1.587005
Real‐time flux monitoring and feedback control of a valved arsenic source
T. J. Mattord; K. Sadra; A. Srinivasan; A. Tang; T. R. Block; Y. C. Albert Shih; D. P. Neikirk; B. G. Streetman
J. Vac. Sci. Technol. B 11, 1050–1052 (1993)
https://doi.org/10.1116/1.587006
Effect of compressive and tensile strain on misfit dislocation injection in SiGe epitaxial layers
J. Vac. Sci. Technol. B 11, 1056–1063 (1993)
https://doi.org/10.1116/1.587007
Stability of strained Si1−yCy random alloy layers
J. Vac. Sci. Technol. B 11, 1064–1068 (1993)
https://doi.org/10.1116/1.587008
Surface studies during growth of Si1−xGex/Si from gaseous Si and Ge hydrides
J. Vac. Sci. Technol. B 11, 1073–1076 (1993)
https://doi.org/10.1116/1.587010
Low‐temperature cleaning processes for Si molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 1077–1082 (1993)
https://doi.org/10.1116/1.587011
Very narrow SiGe/Si quantum wells deposited by low‐temperature atmospheric pressure chemical vapor deposition
J. Vac. Sci. Technol. B 11, 1083–1088 (1993)
https://doi.org/10.1116/1.587012
Photoluminescence study of Si1−xGex/Si heterostructures grown by molecular beam epitaxy and ultrahigh vacuum chemical vapor deposition
J. Vac. Sci. Technol. B 11, 1089–1096 (1993)
https://doi.org/10.1116/1.587013
Luminescence studies of confined excitons in pseudomorphic Si/SiGe quantum wells grown by solid source molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 1097–1100 (1993)
https://doi.org/10.1116/1.586819
On free‐exciton behavior in molecular‐beam epitaxially grown Si1−xGex quantum wells
J. Vac. Sci. Technol. B 11, 1101–1105 (1993)
https://doi.org/10.1116/1.586820
Characterization of undoped multiple quantum well structures
J. Vac. Sci. Technol. B 11, 1106–1109 (1993)
https://doi.org/10.1116/1.586821
Electro‐ and photoluminescence studies from ultrathin SimGen superlattices
J. Vac. Sci. Technol. B 11, 1110–1114 (1993)
https://doi.org/10.1116/1.586822
Sb surface segregation during heavy doping of Si(100) grown at low temperature by molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 1115–1119 (1993)
https://doi.org/10.1116/1.586823
Ge segregation during the growth of a SiGe buried layer by molecular beam epitaxy
J. Vac. Sci. Technol. B 11, 1120–1123 (1993)
https://doi.org/10.1116/1.586824
Selective SiGe and heavily As doped Si deposited at low temperature by atmospheric pressure chemical vapor deposition
J. Vac. Sci. Technol. B 11, 1124–1128 (1993)
https://doi.org/10.1116/1.586825
Effects of doping on growth in the dichlorosilane/germane system
J. Vac. Sci. Technol. B 11, 1129–1133 (1993)
https://doi.org/10.1116/1.586826
Epitaxy and doping of Si and Si1−xGex at low temperature by rapid thermal chemical vapor deposition
J. Vac. Sci. Technol. B 11, 1134–1139 (1993)
https://doi.org/10.1116/1.586827
Angle‐resolved magneto‐tunneling spectroscopy to probe valence band anisotropy in Si/Si1−xGex quantum wells
J. Vac. Sci. Technol. B 11, 1140–1144 (1993)
https://doi.org/10.1116/1.586828
Evidence of phonon‐absorption‐assisted electron resonant tunneling in Si/Si1−xGex diodes
J. Vac. Sci. Technol. B 11, 1145–1148 (1993)
https://doi.org/10.1116/1.586829
Scanning tunneling microscopy and spectroscopy of Si‐based heterostructures
J. Vac. Sci. Technol. B 11, 1149–1153 (1993)
https://doi.org/10.1116/1.586830
Optically detected magnetic resonance of sharp luminescence from Si/Si1−xGex superlattices
T. A. Kennedy; E. R. Glaser; D. J. Godbey; P. E. Thompson; C. H. Chern; K. L. Wang; X. Xiao; J. C. Sturm
J. Vac. Sci. Technol. B 11, 1154–1158 (1993)
https://doi.org/10.1116/1.586831
SiGe/Si electronics and optoelectronics
J. Vac. Sci. Technol. B 11, 1159–1167 (1993)
https://doi.org/10.1116/1.586832
Modeling of parasitic barrier effects in silicide/Si1−xGex Schottky‐barrier infrared detectors fabricated with a silicon sacrificial layer
J. Vac. Sci. Technol. B 11, 1168–1171 (1993)
https://doi.org/10.1116/1.586833
Fabrication of a lateral p‐i‐n photodiode in a Si/(Si0.8Ge0.2/Si) superlattice/Si/sapphire structure
J. Vac. Sci. Technol. B 11, 1172–1175 (1993)
https://doi.org/10.1116/1.586834
High mobility electron gases and modulation‐doped field effect transistors fabricated in Si/Si1−xGex by rapid thermal chemical vapor deposition
J. Vac. Sci. Technol. B 11, 1176–1178 (1993)
https://doi.org/10.1116/1.586835
Modeling and characteristics of bistable optoelectronic switches and heterojunction field effect transistors in molecular‐beam epitaxially grown SiGe/Si
J. Vac. Sci. Technol. B 11, 1179–1185 (1993)
https://doi.org/10.1116/1.586836
High‐performance Si/SiGe heterojunction bipolar transistors grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 11, 1186–1189 (1993)
https://doi.org/10.1116/1.586837
Effect of heavy doping on band gap in SiGe base regions
J. Vac. Sci. Technol. B 11, 1190–1192 (1993)
https://doi.org/10.1116/1.586838
Electrical characteristics of double‐base Si/Si1−xGex/Si heterojunction bipolar transistors
J. Vac. Sci. Technol. B 11, 1193–1198 (1993)
https://doi.org/10.1116/1.586839
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Machine learning driven measurement of high-aspect-ratio nanostructures using Mueller matrix spectroscopic ellipsometry
Shiva Mudide, Nick Keller, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.