Skip Nav Destination
Issues
July 1992
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena
ISSN 1071-1023
EISSN 1520-8567
GaN, AlN, and InN: A review
J. Vac. Sci. Technol. B 10, 1237–1266 (1992)
https://doi.org/10.1116/1.585897
In situ characterization of InP surfaces after low‐energy hydrogen ion cleaning
J. Vac. Sci. Technol. B 10, 1267–1272 (1992)
https://doi.org/10.1116/1.585898
FeGe liquid metal ion source for maskless isolation implants in InP
J. Vac. Sci. Technol. B 10, 1273–1276 (1992)
https://doi.org/10.1116/1.585899
Closed‐ampoule diffusion of sulfur into Cd‐doped InP substrates: Dependence of S profiles on diffusion temperature and time
J. Vac. Sci. Technol. B 10, 1277–1284 (1992)
https://doi.org/10.1116/1.585900
Mesa surface recombination current in AlGaAs/GaAs heterojunction bipolar transistors with an emitter–base–emitter structure
J. Vac. Sci. Technol. B 10, 1285–1290 (1992)
https://doi.org/10.1116/1.585857
Effect of cleanings on the composition of HgCdTe surfaces
J. Vac. Sci. Technol. B 10, 1297–1311 (1992)
https://doi.org/10.1116/1.585859
Etching of polysilicon in a high‐density electron cyclotron resonance plasma with collimated magnetic field
J. Vac. Sci. Technol. B 10, 1312–1319 (1992)
https://doi.org/10.1116/1.585860
Study of gate oxide damage in an electron cyclotron resonance argon plasma
J. Vac. Sci. Technol. B 10, 1320–1322 (1992)
https://doi.org/10.1116/1.585861
Photoemission study of oxygen adsorption on ternary silicides
J. Vac. Sci. Technol. B 10, 1323–1328 (1992)
https://doi.org/10.1116/1.585862
Use of scanning tunneling microscopy and transmission electron microscopy to quantify and characterize CoSi2 roughness
J. Vac. Sci. Technol. B 10, 1329–1334 (1992)
https://doi.org/10.1116/1.585863
Differences in final state effects for adsorbates on metal and semiconductor surfaces
J. Vac. Sci. Technol. B 10, 1335–1336 (1992)
https://doi.org/10.1116/1.585864
Remote plasma chemical vapor deposition of copper for applications in microelectronics
J. Vac. Sci. Technol. B 10, 1337–1340 (1992)
https://doi.org/10.1116/1.585865
Mercury cadmium telluride material requirements for infrared systems
J. Vac. Sci. Technol. B 10, 1353–1358 (1992)
https://doi.org/10.1116/1.585868
Key issues in HgCdTe‐based focal plane arrays: An industry perspective
J. Vac. Sci. Technol. B 10, 1359–1369 (1992)
https://doi.org/10.1116/1.585869
Growth of (111) CdTe on GaAs/Si and Si substrates for HgCdTe epitaxy
J. Vac. Sci. Technol. B 10, 1370–1375 (1992)
https://doi.org/10.1116/1.585870
Low temperature epitaxy of HgTe, CdTe, and HgCdTe using flow modulation techniques
J. Vac. Sci. Technol. B 10, 1376–1379 (1992)
https://doi.org/10.1116/1.585871
Growth of uniform HgCdTe by metalorganic chemical vapor deposition system
J. Vac. Sci. Technol. B 10, 1380–1383 (1992)
https://doi.org/10.1116/1.585872
Photoassisted organometallic vapor‐phase epitaxy of CdTe
J. Vac. Sci. Technol. B 10, 1384–1391 (1992)
https://doi.org/10.1116/1.585873
Study of CdTe epitaxial growth on (211)B GaAs by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 10, 1399–1404 (1992)
https://doi.org/10.1116/1.585875
Current status of direct growth of CdTe and HgCdTe on silicon by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 10, 1405–1409 (1992)
https://doi.org/10.1116/1.585876
Real time control of the molecular‐beam epitaxial growth of CdHgTe and CdTe/HgTe superlattices using ellipsometry
R. H. Hartley; M. A. Folkard; D. Carr; P. J. Orders; D. Rees; I. K. Varga; V. Kumar; G. Shen; T. A. Steele; H. Buskes; J. B. Lee
J. Vac. Sci. Technol. B 10, 1410–1414 (1992)
https://doi.org/10.1116/1.585877
Selected‐area epitaxy of CdTe
J. David Benson; N. K. Dhar; M. Martinka; P. R. Boyd; J. H. Dinan; R. B. Benz; B. K. Wagner; C. J. Summers
J. Vac. Sci. Technol. B 10, 1415–1417 (1992)
https://doi.org/10.1116/1.585878
Properties of CdZnTe crystals grown by a high pressure Bridgman method
J. Vac. Sci. Technol. B 10, 1418–1422 (1992)
https://doi.org/10.1116/1.586264
p‐type doping of metalorganic chemical vapor deposition‐grown HgCdTe by arsenic and antimony
J. Vac. Sci. Technol. B 10, 1423–1427 (1992)
https://doi.org/10.1116/1.586265
Orientation dependance of arsenic incorporation in metalorganic chemical‐vapor deposition‐grown HgCdTe
J. Vac. Sci. Technol. B 10, 1428–1431 (1992)
https://doi.org/10.1116/1.586266
Gas source iodine doping and characterization of molecular‐beam epitaxially grown CdTe
J. Vac. Sci. Technol. B 10, 1432–1437 (1992)
https://doi.org/10.1116/1.586267
Dopant diffusion in HgCdTe grown by photon assisted molecular‐beam epitaxy
J. Vac. Sci. Technol. B 10, 1438–1443 (1992)
https://doi.org/10.1116/1.586268
Point defects and defect–impurity interaction in CdxHg1−xTe and other II–VI semiconductors: Facts and conjectures
J. Vac. Sci. Technol. B 10, 1444–1450 (1992)
https://doi.org/10.1116/1.586269
Ion mill damage in n‐HgCdTe
J. Vac. Sci. Technol. B 10, 1460–1465 (1992)
https://doi.org/10.1116/1.586272
Investigation of mercury interstitials in Hg1−xCdxTe alloys using resonant impact‐ionization spectroscopy
J. Vac. Sci. Technol. B 10, 1466–1470 (1992)
https://doi.org/10.1116/1.586273
Defect equilibrium in HgTe
J. Vac. Sci. Technol. B 10, 1471–1475 (1992)
https://doi.org/10.1116/1.586274
Recipe to minimize Te precipitation in CdTe and (Cd,Zn)Te crystals
H. R. Vydyanath; J. Ellsworth; J. J. Kennedy; B. Dean; C. J. Johnson; G. T. Neugebauer; J. Sepich; Pok‐Kai Liao
J. Vac. Sci. Technol. B 10, 1476–1484 (1992)
https://doi.org/10.1116/1.586275
Dislocation reduction in HgCdTe on GaAs and Si
J. Vac. Sci. Technol. B 10, 1492–1498 (1992)
https://doi.org/10.1116/1.586277
Effect of dislocations on the electrical and optical properties of long‐wavelength infrared HgCdTe photovoltaic detectors
J. Vac. Sci. Technol. B 10, 1499–1506 (1992)
https://doi.org/10.1116/1.586278
Investigation of the generation–recombination currents in HgCdTe midwavelength infrared photodiodes
J. Vac. Sci. Technol. B 10, 1507–1514 (1992)
https://doi.org/10.1116/1.586279
Photoemission spectroscopic techniques to assess physical and chemical properties of mercury cadmium telluride
J. Vac. Sci. Technol. B 10, 1515–1524 (1992)
https://doi.org/10.1116/1.586280
Metal–semiconductor work function differences with HgCdTe and their effect on radiation‐induced flatband voltage shifts
J. Vac. Sci. Technol. B 10, 1530–1533 (1992)
https://doi.org/10.1116/1.586243
HgTe contacts to p‐HgCdTe
J. Vac. Sci. Technol. B 10, 1534–1537 (1992)
https://doi.org/10.1116/1.586244
Electron microscope investigation of surface features of {100} Cd1−yZnyTe grown by metalorganic chemical vapor deposition
J. Vac. Sci. Technol. B 10, 1543–1548 (1992)
https://doi.org/10.1116/1.586246
Ordered phase in (Hg,Cd)Te grown by liquid‐phase epitaxy on CdTe (111)B substrate
J. Vac. Sci. Technol. B 10, 1549–1552 (1992)
https://doi.org/10.1116/1.586247
High‐spatial‐resolution resistivity mapping applied to mercury cadmium telluride
Joseph J. Kopanski; Jeremiah R. Lowney; Donald B. Novotny; David G. Seiler; Art Simmons; John Ramsey
J. Vac. Sci. Technol. B 10, 1553–1559 (1992)
https://doi.org/10.1116/1.586248
Analysis of excess carrier lifetime in p‐type HgCdTe using a three‐level Shockley–Read model
J. Vac. Sci. Technol. B 10, 1560–1568 (1992)
https://doi.org/10.1116/1.586249
Influence of resonant defect states on subband structures in Hg1−xCdxTe
J. Vac. Sci. Technol. B 10, 1569–1573 (1992)
https://doi.org/10.1116/1.586250
Properties of (211)B HgTe–CdTe superlattices grown by photon assisted molecular‐beam epitaxy
K. A. Harris; R. W. Yanka; L. M. Mohnkern; A. R. Reisinger; T. H. Myers; Z. Yang; Z. Yu; S. Hwang; J. F. Schetzina
J. Vac. Sci. Technol. B 10, 1574–1581 (1992)
https://doi.org/10.1116/1.586251
Magnetic generation of electrons and holes in semimetallic HgTe–CdTe superlattices
J. R. Meyer; C. A. Hoffman; F. J. Bartoli; T. Wojtowicz; M. Dobrowolska; J. K. Furdyna; X. Chu; J. P. Faurie; L. R. Ram‐Mohan
J. Vac. Sci. Technol. B 10, 1582–1586 (1992)
https://doi.org/10.1116/1.586252
HgCdTe double heterostructure diode lasers grown by molecular‐beam epitaxy
J. Vac. Sci. Technol. B 10, 1587–1593 (1992)
https://doi.org/10.1116/1.586253
Nonlinear optical effects in rotationally twinned CdTe and CdMnTe crystals
J. Vac. Sci. Technol. B 10, 1594–1598 (1992)
https://doi.org/10.1116/1.586254
Covered electrode HgCdTe photoconductor under high illumination levels
J. Vac. Sci. Technol. B 10, 1611–1616 (1992)
https://doi.org/10.1116/1.586257
Noise (1/f) and dark currents in midwavelength infrared PACE‐I HgCdTe photodiodes
J. Vac. Sci. Technol. B 10, 1617–1625 (1992)
https://doi.org/10.1116/1.586258
Bias‐switchable dual‐band HgCdTe infrared photodetector
J. Vac. Sci. Technol. B 10, 1626–1632 (1992)
https://doi.org/10.1116/1.586259
Compositional analysis of HgCdTe epitaxial layers using secondary ion mass spectrometry
J. Vac. Sci. Technol. B 10, 1633–1637 (1992)
https://doi.org/10.1116/1.586260
Quantum Hall effect and setback modulation doping in HgTe–CdTe heterostructures
J. Vac. Sci. Technol. B 10, 1638–1642 (1992)
https://doi.org/10.1116/1.586261
Reduced metal–insulator semiconductor tunneling in metalorganic chemical vapor deposition HgCdTe(111)Te films
J. Vac. Sci. Technol. B 10, 1643–1650 (1992)
https://doi.org/10.1116/1.586262
TiNxOy transparent electrode material for HgCdTe infrared devices
J. Vac. Sci. Technol. B 10, 1658–1662 (1992)
https://doi.org/10.1116/1.586283
Thermodynamics of surface‐induced ordering in the Ga1−xInxP alloy
J. Vac. Sci. Technol. B 10, 1683–1688 (1992)
https://doi.org/10.1116/1.586223
Surface reconstruction, steps, and ordering in semiconductor alloys grown from vapor phase
J. Vac. Sci. Technol. B 10, 1689–1694 (1992)
https://doi.org/10.1116/1.586224
Si(111)/FeSi2 heterostructures: Formation and properties of the low temperature metallic (γ) and semiconducting (β) disilicide phases
J. Vac. Sci. Technol. B 10, 1704–1709 (1992)
https://doi.org/10.1116/1.586226
Analysis of molecular‐beam epitaxial growth of InAs on GaAs(100) by reflection anisotropy spectroscopy
J. Vac. Sci. Technol. B 10, 1710–1715 (1992)
https://doi.org/10.1116/1.586227
Dimer formation on (001) GaAs under organometallic chemical vapor deposition growth conditions
J. Vac. Sci. Technol. B 10, 1716–1719 (1992)
https://doi.org/10.1116/1.586228
Stoichiometry‐ and bond‐structure‐dependent decomposition of trimethylgallium on As‐rich GaAs(100) surfaces
J. Vac. Sci. Technol. B 10, 1720–1724 (1992)
https://doi.org/10.1116/1.586229
Atomic layer epitaxy on (001) GaAs: Real‐time spectroscopy
J. Vac. Sci. Technol. B 10, 1725–1729 (1992)
https://doi.org/10.1116/1.586230
Can nuclear magnetic resonance resolve epitaxial layers?
J. Vac. Sci. Technol. B 10, 1740–1743 (1992)
https://doi.org/10.1116/1.586233
Interfacial atomic structure and band offsets at semiconductor heterojunctions
J. Vac. Sci. Technol. B 10, 1744–1753 (1992)
https://doi.org/10.1116/1.586234
How does the chemical nature of the interface modify the band offset?
J. Vac. Sci. Technol. B 10, 1754–1756 (1992)
https://doi.org/10.1116/1.586235
Internal barriers in GaAs epitaxial layers produced by delta‐doped dipoles
T.‐H. Shen; A. C. Ford; M. Elliott; R. H. Williams; D. I. Westwood; D. A. Woolf; J. P. Marlow; J. E. Aubrey; G. Hill
J. Vac. Sci. Technol. B 10, 1757–1760 (1992)
https://doi.org/10.1116/1.586236
GaInAs/InP and GaInP/GaAs (100) interfaces: An ultraviolet photoelectron spectroscopy study
J. Vac. Sci. Technol. B 10, 1761–1768 (1992)
https://doi.org/10.1116/1.586237
Are there Tamm‐state donors at the InAs–AlSb quantum well interface?
J. Vac. Sci. Technol. B 10, 1769–1772 (1992)
https://doi.org/10.1116/1.586238
Effect of interface composition on the band offsets at InAs/AlSb (001) heterojunctions
J. Vac. Sci. Technol. B 10, 1773–1778 (1992)
https://doi.org/10.1116/1.586239
Reflection high‐energy electron diffraction studies of the growth of InAs/Ga1−xInxSb strained‐layer superlattices
J. Vac. Sci. Technol. B 10, 1779–1783 (1992)
https://doi.org/10.1116/1.586240
Measurement of reflection high‐energy electron diffraction oscillations during molecular‐beam epitaxial growth of GaAs on a rotating substrate
J. Vac. Sci. Technol. B 10, 1784–1786 (1992)
https://doi.org/10.1116/1.586241
Binary AlAs/GaAs versus ternary GaAlAs/GaAs interfaces: A dramatic difference of perfection
J. Vac. Sci. Technol. B 10, 1793–1798 (1992)
https://doi.org/10.1116/1.586201
Scanning tunneling optical spectroscopy of semiconductor thin films and quantum wells
J. Vac. Sci. Technol. B 10, 1803–1806 (1992)
https://doi.org/10.1116/1.586203
Relaxed GexSi1−x structures for III–V integration with Si and high mobility two‐dimensional electron gases in Si
E. A. Fitzgerald; Y.‐H. Xie; D. Monroe; P. J. Silverman; J. M. Kuo; A. R. Kortan; F. A. Thiel; B. E. Weir
J. Vac. Sci. Technol. B 10, 1807–1819 (1992)
https://doi.org/10.1116/1.586204
Lattice tilt and dislocations in compositionally step‐graded buffer layers for mismatched InGaAs/GaAs heterointerfaces
J. Vac. Sci. Technol. B 10, 1820–1823 (1992)
https://doi.org/10.1116/1.586205
Magnetotransport properties of two‐dimensional channels in pseudomorphic and strain relaxed In0.17Ga0.83As heterojunctions
J. Vac. Sci. Technol. B 10, 1824–1828 (1992)
https://doi.org/10.1116/1.586206
Growth modes and relaxation mechanisms of strained InGaAs layers grown on InP(001)
J. Vac. Sci. Technol. B 10, 1829–1834 (1992)
https://doi.org/10.1116/1.586207
InGaAs/InP quantum wells on vicinal Si(001): Structural and optical properties
J. Vac. Sci. Technol. B 10, 1840–1843 (1992)
https://doi.org/10.1116/1.586209
Low‐temperature formation of device‐quality SiO2/Si interfaces by a two‐step remote plasma‐assisted oxidation/deposition process
J. Vac. Sci. Technol. B 10, 1844–1851 (1992)
https://doi.org/10.1116/1.586210
Characterization of point defect generation at silicon surfaces using gold diffusion
J. Vac. Sci. Technol. B 10, 1852–1855 (1992)
https://doi.org/10.1116/1.586211
GaSb‐oxide removal and surface passivation using an electron cyclotron resonance hydrogen source
J. Vac. Sci. Technol. B 10, 1856–1861 (1992)
https://doi.org/10.1116/1.586212
Vacuum ultraviolet photoelectron spectroscopy study of the interaction of molecular sulfur with the GaAs(100) surface
J. Vac. Sci. Technol. B 10, 1862–1866 (1992)
https://doi.org/10.1116/1.586213
Role of defects in the passivation of III–V semiconductor surfaces modified by alkali metals: O2/Rb/p‐ and n‐type GaSb(110)
J. Vac. Sci. Technol. B 10, 1867–1873 (1992)
https://doi.org/10.1116/1.586214
Tunneling spectroscopy on compensating surface defects induced by Si doping of molecular‐beam epitaxially grown GaAs(001)
J. Vac. Sci. Technol. B 10, 1874–1880 (1992)
https://doi.org/10.1116/1.586215
Atom‐resolved imaging and spectroscopy on the GaAs(001) surface using tunneling microscopy
V. Bressler‐Hill; M. Wassermeier; K. Pond; R. Maboudian; G. A. D. Briggs; P. M. Petroff; W. H. Weinberg
J. Vac. Sci. Technol. B 10, 1881–1885 (1992)
https://doi.org/10.1116/1.586216
Work function, electron affinity, and band bending at decapped GaAs(100) surfaces
J. Vac. Sci. Technol. B 10, 1886–1890 (1992)
https://doi.org/10.1116/1.586217
Dramatic work function variations of molecular‐beam epitaxially grown GaAs(100) surfaces
J. Vac. Sci. Technol. B 10, 1891–1897 (1992)
https://doi.org/10.1116/1.586218
Temperature‐dependent chemical and electronic structure of reconstructed GaAs (100) surfaces
I. M. Vitomirov; A. D. Raisanen; A. C. Finnefrock; R. E. Viturro; L. J. Brillson; P. D. Kirchner; G. D. Pettit; J. M. Woodall
J. Vac. Sci. Technol. B 10, 1898–1903 (1992)
https://doi.org/10.1116/1.586219
Electromodulation study of GaAs with excess arsenic
J. Vac. Sci. Technol. B 10, 1904–1907 (1992)
https://doi.org/10.1116/1.586220
Comparison of the geometric structure and electron reflectivity of A/B‐NiSi2/Si(111) and U/F‐Si(111)‐7×7 interfaces
J. Vac. Sci. Technol. B 10, 1908–1913 (1992)
https://doi.org/10.1116/1.586221
In overlayers on Sb passivated GaAs
J. Vac. Sci. Technol. B 10, 1918–1922 (1992)
https://doi.org/10.1116/1.586158
Interface stoichiometry dependence of the Schottky barrier height of CoGa and GaAs
J. Vac. Sci. Technol. B 10, 1923–1927 (1992)
https://doi.org/10.1116/1.586159
Inhomogeneous and wide range of barrier heights at metal/molecular‐beam epitaxy GaAs(100) interfaces observed with electrical measurements
J. Vac. Sci. Technol. B 10, 1932–1939 (1992)
https://doi.org/10.1116/1.586161
Schottky barrier height and negative electron affinity of titanium on (111) diamond
J. Vac. Sci. Technol. B 10, 1940–1943 (1992)
https://doi.org/10.1116/1.586162
Fermi‐level inhomogeneities on the GaAs (110) surface imaged with a photoelectron microscope
J. Vac. Sci. Technol. B 10, 1944–1948 (1992)
https://doi.org/10.1116/1.586163
Strain and the two‐dimensional electronic structure of monolayers of Bi/InAs(110) and Bi/GaAs(110)
J. Vac. Sci. Technol. B 10, 1949–1952 (1992)
https://doi.org/10.1116/1.586164
Surface atomic structure and bonding of GaAs(110)‐p(1×1)–Bi (1 ML)
J. Vac. Sci. Technol. B 10, 1953–1958 (1992)
https://doi.org/10.1116/1.586165
Interface states and the transport of two‐dimensional interface excitons in AlGaAs/GaAs structures
J. Vac. Sci. Technol. B 10, 1959–1964 (1992)
https://doi.org/10.1116/1.586166
Defects in strained In0.2Ga0.8As/GaAs multiple quantum wells on patterned and unpatterned substrates: A near‐infrared cathodoluminescence study
D. H. Rich; K. C. Rajkumar; Li Chen; A. Madhukar; T. George; J. Maserjian; F. J. Grunthaner; A. Larsson
J. Vac. Sci. Technol. B 10, 1965–1970 (1992)
https://doi.org/10.1116/1.586167
Study of partial strain release and surface states formed on the sidewall of InGaAs quantum‐well wires
I‐Hsing Tan; Richard Mirin; Takashi Yasuda; Evelyn L. Hu; John Bowers; Craig B. Prater; Paul K. Hansma; Ming Yuan He; Anthony G. Evans
J. Vac. Sci. Technol. B 10, 1971–1974 (1992)
https://doi.org/10.1116/1.586168
Photoluminescence and photoluminescence excitation spectroscopy of H‐related defects in strained InxGa1−xAs/GaAs(100) quantum wells
J. Vac. Sci. Technol. B 10, 1975–1979 (1992)
https://doi.org/10.1116/1.586169
Effect of Γ–X mixing on electron tunneling times in GaAs/AlAs double barrier heterostructures
J. Vac. Sci. Technol. B 10, 1980–1983 (1992)
https://doi.org/10.1116/1.586170
Dynamic effects of coherent epitaxial strain and surface stability: Ge on Si(100)
J. Vac. Sci. Technol. B 10, 1984–1989 (1992)
https://doi.org/10.1116/1.586171
Surface morphology of molecular‐beam epitaxially grown Si1−xGex layers on (100) and (110) Si
J. Vac. Sci. Technol. B 10, 1990–1993 (1992)
https://doi.org/10.1116/1.586172
Study of phonons and long‐range order in Si–Ge superlattices using empirical interatomic potentials
J. Vac. Sci. Technol. B 10, 1994–1997 (1992)
https://doi.org/10.1116/1.586173
Band‐edge exciton luminescence from Si/strained Si1−xGex/Si structures
J. Vac. Sci. Technol. B 10, 1998–2001 (1992)
https://doi.org/10.1116/1.586174
Characterization of Si1−xGex/Si (100) heterostructures by photoluminescence and admittance spectroscopy
J. Vac. Sci. Technol. B 10, 2002–2007 (1992)
https://doi.org/10.1116/1.586175
In situ transmission electron microscopy measurements of the electrical and structural properties of strained layer GeSi/Si p–n junctions
J. Vac. Sci. Technol. B 10, 2008–2012 (1992)
https://doi.org/10.1116/1.586176
Photoluminescence from pseudomorphic Si1−xGex quantum wells grown by molecular beam epitaxy: Variation of the band gap with high pressure
J. Vac. Sci. Technol. B 10, 2018–2021 (1992)
https://doi.org/10.1116/1.586178
Measurements of critical point energies in the conduction band structure of Si1−xGex
J. Vac. Sci. Technol. B 10, 2022–2025 (1992)
https://doi.org/10.1116/1.586311
Interfacial point defects in heavily implanted silicon germanium alloys
J. Vac. Sci. Technol. B 10, 2026–2029 (1992)
https://doi.org/10.1116/1.586310
Observation of quantum dot levels produced by strain modulation of GaAs–AlGaAs quantum wells
J. Vac. Sci. Technol. B 10, 2030–2033 (1992)
https://doi.org/10.1116/1.586312
Growth of p‐ and n‐type GaAs/(AlGa)As double barrier resonant tunneling devices on (311)A and (111)B substrate orientations
J. Vac. Sci. Technol. B 10, 2040–2045 (1992)
https://doi.org/10.1116/1.586314
Lateral p–n junctions between quasi‐two‐dimensional electron and hole systems at corrugated GaAs/AlGaAs interfaces
J. Vac. Sci. Technol. B 10, 2051–2055 (1992)
https://doi.org/10.1116/1.586316
Quantum wells, excitons, and lasers at blue‐green wavelengths in ZnSe‐based heterostructures
J. Vac. Sci. Technol. B 10, 2056–2061 (1992)
https://doi.org/10.1116/1.586317
Optical analysis of metalorganic vapor phase epitaxy grown ZnS/ZnSe/GaAs(100) heterostructures: Carrier diffusion and interface sharpness
J. Vac. Sci. Technol. B 10, 2062–2065 (1992)
https://doi.org/10.1116/1.586318
In situ Raman studies during the epitaxial growth of ZnSe layers on GaAs(110)
J. Vac. Sci. Technol. B 10, 2066–2071 (1992)
https://doi.org/10.1116/1.586319
Schottky barrier induced injecting contact on wide band gap semiconductors
J. Vac. Sci. Technol. B 10, 2072–2076 (1992)
https://doi.org/10.1116/1.586320
Epitaxial Ga2Se3 layers grown on GaAs(100) using a heterovalent exchange reaction
J. Vac. Sci. Technol. B 10, 2077–2081 (1992)
https://doi.org/10.1116/1.586321
Photoelectron holography of Si(100)‐[2×1] and other surface and thin‐film structures
J. Vac. Sci. Technol. B 10, 2082–2087 (1992)
https://doi.org/10.1116/1.586322
Near‐surface atom imaging using multiple‐energy photoelectron holography
J. Vac. Sci. Technol. B 10, 2088–2091 (1992)
https://doi.org/10.1116/1.586323
Momentum‐space images of surface dimers on GaAs(001)‐(2×4) by high‐energy Auger and x‐ray photoelectron diffraction
J. Vac. Sci. Technol. B 10, 2092–2098 (1992)
https://doi.org/10.1116/1.586324
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Exploring SiC CVD growth parameters compatible with remote epitaxy
Daniel J. Pennachio, Jenifer R. Hajzus, et al.