Skip Nav Destination
Issues
October 1983
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Photoemission study of GeAs(2̄01): A model for the As‐stabilized Ge surface on GaAs/Ge heterojunctions
J. Vac. Sci. Technol. B 1, 865–870 (1983)
https://doi.org/10.1116/1.582707
Solid‐phase‐epitaxial growth and formation of metastable alloys in ion implanted silicon
J. Vac. Sci. Technol. B 1, 871–887 (1983)
https://doi.org/10.1116/1.582708
The use of pulsed laser irradiation in silicon molecular beam epitaxy: A comparative low energy electron diffraction study
J. Vac. Sci. Technol. B 1, 888–898 (1983)
https://doi.org/10.1116/1.582709
Early stages of silicide formation on W, Ni, and Pt surfaces, an atom probe, and field ion microscope study
J. Vac. Sci. Technol. B 1, 915–922 (1983)
https://doi.org/10.1116/1.582711
Kinetics of the ablative photodecomposition of organic polymers in the far ultraviolet (193 nm)
J. Vac. Sci. Technol. B 1, 923–926 (1983)
https://doi.org/10.1116/1.582712
Etch products from the reaction of XeF2 with SiO2, Si3N4, SiC, and Si in the presence of ion bombardment
J. Vac. Sci. Technol. B 1, 927–931 (1983)
https://doi.org/10.1116/1.582713
Ammonium fluoride deposition during plasma etching of silicon nitride
J. Vac. Sci. Technol. B 1, 932–934 (1983)
https://doi.org/10.1116/1.582714
Plasma enhanced beam deposition of thin films at low temperatures
J. Vac. Sci. Technol. B 1, 935–942 (1983)
https://doi.org/10.1116/1.582715
Optical monitoring for rate and uniformity control of low power plasma‐enhanced CVD
J. Vac. Sci. Technol. B 1, 943–946 (1983)
https://doi.org/10.1116/1.582716
Molecular level fabrication techniques and molecular electronic devices
J. Vac. Sci. Technol. B 1, 959–968 (1983)
https://doi.org/10.1116/1.582717
Maskless etching of a nanometer structure by focused ion beams
J. Vac. Sci. Technol. B 1, 985–989 (1983)
https://doi.org/10.1116/1.582719
A large angle electrostatic deflection, variable shaped, electron beam exposure system
J. Vac. Sci. Technol. B 1, 990–994 (1983)
https://doi.org/10.1116/1.582720
Design aspects of the optics of the VLS‐1000 electron‐beam direct‐write lithography system
J. Vac. Sci. Technol. B 1, 995–998 (1983)
https://doi.org/10.1116/1.582721
Dot matrix electron beam lithography
J. Vac. Sci. Technol. B 1, 999–1002 (1983)
https://doi.org/10.1116/1.582722
EL‐3 application to 0.5 μm semiconductor lithography
J. Vac. Sci. Technol. B 1, 1003–1006 (1983)
https://doi.org/10.1116/1.582662
Edge contrast: A new definition for comparative lithography tool characterization
J. Vac. Sci. Technol. B 1, 1007–1010 (1983)
https://doi.org/10.1116/1.582663
Performance results of an electron beam lithography machine and process by means of dc electrical test structures
J. Vac. Sci. Technol. B 1, 1014–1019 (1983)
https://doi.org/10.1116/1.582665
The magnitude and significance of proximity effects in electron image projector defined layers
J. Vac. Sci. Technol. B 1, 1020–1022 (1983)
https://doi.org/10.1116/1.582666
Registration mark detection in electron beam proximity printing
J. Vac. Sci. Technol. B 1, 1023–1027 (1983)
https://doi.org/10.1116/1.582667
Chemically assisted ion beam etching for submicron structures
J. Vac. Sci. Technol. B 1, 1028–1032 (1983)
https://doi.org/10.1116/1.582668
Local plasma oxidation and reactive ion etching of metal films for ultrafine line pattern inversion and transfer
J. Vac. Sci. Technol. B 1, 1033–1036 (1983)
https://doi.org/10.1116/1.582669
Reactive ion etching for submicron structures of refractory metal silicides and polycides
J. Vac. Sci. Technol. B 1, 1037–1042 (1983)
https://doi.org/10.1116/1.582670
Large area ion beam assisted etching of GaAs with high etch rates and controlled anisotropy
J. Vac. Sci. Technol. B 1, 1043–1046 (1983)
https://doi.org/10.1116/1.582671
Maskless etching of GaAs and InP using a scanning microplasma
J. Vac. Sci. Technol. B 1, 1047–1049 (1983)
https://doi.org/10.1116/1.582672
Reactive ion etching of GaAs using CCl2F2 and the effect of Ar addition
J. Vac. Sci. Technol. B 1, 1050–1052 (1983)
https://doi.org/10.1116/1.582673
Focused ion beam microlithography using an etch‐stop process in gallium‐doped silicon
J. Vac. Sci. Technol. B 1, 1056–1058 (1983)
https://doi.org/10.1116/1.582675
High resolution patterning of silicon by selective gallium doping
J. Vac. Sci. Technol. B 1, 1059–1061 (1983)
https://doi.org/10.1116/1.582676
Deep‐UV photolithographic applications of copolymer (methacrylonitrile–methacrylic acid)
J. Vac. Sci. Technol. B 1, 1062–1065 (1983)
https://doi.org/10.1116/1.582677
Conventional novolak resists for storage ring x‐ray lithography
J. Vac. Sci. Technol. B 1, 1072–1075 (1983)
https://doi.org/10.1116/1.582679
Direct engraving on positive resists by synchrotron radiation
J. Vac. Sci. Technol. B 1, 1076–1079 (1983)
https://doi.org/10.1116/1.582636
Submicrometer‐gate GaAs FET fabrication using masked ion beam/optical hybrid lithography
J. Vac. Sci. Technol. B 1, 1080–1083 (1983)
https://doi.org/10.1116/1.582637
Read‐only memory with electron‐beam programmable floating‐gate transistors
J. Vac. Sci. Technol. B 1, 1084–1087 (1983)
https://doi.org/10.1116/1.582638
Fabrication of a high density storage medium for electron beam memory
J. Vac. Sci. Technol. B 1, 1088–1090 (1983)
https://doi.org/10.1116/1.582639
Fabrication of apertures, slots, and grooves at the 8–80 nm scale in silicon and metal films
J. Vac. Sci. Technol. B 1, 1091–1095 (1983)
https://doi.org/10.1116/1.582640
Practical aspects of microfabrication in the 100 nm regime
J. Vac. Sci. Technol. B 1, 1096–1100 (1983)
https://doi.org/10.1116/1.582641
Electron beam lithography from 20 to 120 keV with a high quality beam
J. Vac. Sci. Technol. B 1, 1101–1104 (1983)
https://doi.org/10.1116/1.582642
Generation of <50 nm period gratings using edge defined techniques
J. Vac. Sci. Technol. B 1, 1105–1108 (1983)
https://doi.org/10.1116/1.582643
Applications of surface textures produced with natural lithography
J. Vac. Sci. Technol. B 1, 1109–1112 (1983)
https://doi.org/10.1116/1.582644
Selective Si and Be implantation in GaAs using a 100 kV mass‐separating focused ion beam system with an Au–Si–Be liquid metal ion source
J. Vac. Sci. Technol. B 1, 1113–1116 (1983)
https://doi.org/10.1116/1.582645
100 keV focused ion beam system with a E×B mass filter for maskless ion implantation
J. Vac. Sci. Technol. B 1, 1117–1120 (1983)
https://doi.org/10.1116/1.582646
A new submicron ion probe system
J. Vac. Sci. Technol. B 1, 1121–1124 (1983)
https://doi.org/10.1116/1.582647
Use of a modified paraxial formalism for particle beam dynamics: Application to liquid metal ion sources
J. Vac. Sci. Technol. B 1, 1129–1131 (1983)
https://doi.org/10.1116/1.582649
Space charge effects in focused ion beams
J. Vac. Sci. Technol. B 1, 1141–1144 (1983)
https://doi.org/10.1116/1.582652
Characteristics of an advanced electrohydrodynamic ion source with additional mode of surface ionization
J. Vac. Sci. Technol. B 1, 1145–1147 (1983)
https://doi.org/10.1116/1.582653
Silicon nitride stencil masks for high resolution ion lithography proximity printing
J. Vac. Sci. Technol. B 1, 1152–1155 (1983)
https://doi.org/10.1116/1.582655
Application of chlorinated polymethylstyrene, CPMS, to electron beam lithography
J. Vac. Sci. Technol. B 1, 1156–1159 (1983)
https://doi.org/10.1116/1.582656
Copolymers of itaconic acid and methyl methacrylate as positive electron beam resists
J. Vac. Sci. Technol. B 1, 1160–1165 (1983)
https://doi.org/10.1116/1.582657
Direct pattern fabrication on silicone resin by vapor phase electron beam polymerization
J. Vac. Sci. Technol. B 1, 1171–1173 (1983)
https://doi.org/10.1116/1.582754
High resolution patterning with Ag2S/As2S3 inorganic electron‐beam resist and reactive ion etching
J. Vac. Sci. Technol. B 1, 1174–1177 (1983)
https://doi.org/10.1116/1.582755
Nitrocellulose as a self‐developing resist with submicrometer resolution and processing stability
J. Vac. Sci. Technol. B 1, 1178–1181 (1983)
https://doi.org/10.1116/1.582756
Resist exposure with light ions
J. Vac. Sci. Technol. B 1, 1182–1185 (1983)
https://doi.org/10.1116/1.582757
Contact lithography at 157 nm with an F2 excimer laser
H. G. Craighead; J. C. White; R. E. Howard; L. D. Jackel; R. E. Behringer; J. E. Sweeney; R. W. Epworth
J. Vac. Sci. Technol. B 1, 1186–1189 (1983)
https://doi.org/10.1116/1.582758
A critical examination of submicron optical lithography using simulated projection images
J. Vac. Sci. Technol. B 1, 1190–1195 (1983)
https://doi.org/10.1116/1.582759
Deep‐UV spatial‐frequency doubling by combining multilayer mirrors with diffraction gratings
J. Vac. Sci. Technol. B 1, 1200–1203 (1983)
https://doi.org/10.1116/1.582745
An improved technique for resist‐profile control in holographic lithography
J. Vac. Sci. Technol. B 1, 1204–1206 (1983)
https://doi.org/10.1116/1.582746
Fabrication of submicron crossed square wave gratings by dry etching and thermoplastic replication techniques
J. Vac. Sci. Technol. B 1, 1207–1210 (1983)
https://doi.org/10.1116/1.582747
Submicrometer contact hole delineation with a two‐layer deep‐UV portable conformable masking system
J. Vac. Sci. Technol. B 1, 1219–1224 (1983)
https://doi.org/10.1116/1.582750
A novel bilevel resist system
J. Vac. Sci. Technol. B 1, 1241–1246 (1983)
https://doi.org/10.1116/1.582752
A two‐layer photoresist process for patterning high‐reflectivity substrates
J. Vac. Sci. Technol. B 1, 1247–1250 (1983)
https://doi.org/10.1116/1.582762
Enhanced brightness x‐ray source
J. Vac. Sci. Technol. B 1, 1251–1256 (1983)
https://doi.org/10.1116/1.582763
Design parameters for a small storage ring optimized as an x‐ray lithography source
J. Vac. Sci. Technol. B 1, 1257–1261 (1983)
https://doi.org/10.1116/1.582764
Design and performance of an x‐ray lithography beam line at a storage ring
J. Vac. Sci. Technol. B 1, 1262–1266 (1983)
https://doi.org/10.1116/1.582765
Diffraction effects on pattern replication with synchrotron radiation
J. Vac. Sci. Technol. B 1, 1267–1270 (1983)
https://doi.org/10.1116/1.582766
Investigations of x‐ray exposure using plane scanning mirrors
J. Vac. Sci. Technol. B 1, 1271–1275 (1983)
https://doi.org/10.1116/1.582727
In‐lens deflection system with nonequisectored‐type multipole electrostatic deflectors
J. Vac. Sci. Technol. B 1, 1289–1292 (1983)
https://doi.org/10.1116/1.582731
Electron beam optical system with large field coverage for submicron lithography
J. Vac. Sci. Technol. B 1, 1293–1297 (1983)
https://doi.org/10.1116/1.582732
Optimization of the optical parameters in variable shape electron beam lithography
J. Vac. Sci. Technol. B 1, 1298–1302 (1983)
https://doi.org/10.1116/1.582733
A simplified focusing and deflection system with vertical beam landing
J. Vac. Sci. Technol. B 1, 1303–1306 (1983)
https://doi.org/10.1116/1.582734
Correction of spherical aberration in charged particle lenses using aspherical foils
J. Vac. Sci. Technol. B 1, 1312–1315 (1983)
https://doi.org/10.1116/1.582736
Numerical considerations on multipole‐type electrostatic deflectors
J. Vac. Sci. Technol. B 1, 1322–1326 (1983)
https://doi.org/10.1116/1.582738
Computer simulation of high dose reactive‐ion implants into silicon
J. Vac. Sci. Technol. B 1, 1331–1333 (1983)
https://doi.org/10.1116/1.582740
Effects of dry etching on GaAs
J. Vac. Sci. Technol. B 1, 1334–1337 (1983)
https://doi.org/10.1116/1.582741
A high performance electron energy loss spectrometer for use with a dedicated STEM
J. Vac. Sci. Technol. B 1, 1338–1343 (1983)
https://doi.org/10.1116/1.582742
Surface potential measurements on floating targets with a parallel beam technique
J. Vac. Sci. Technol. B 1, 1344–1347 (1983)
https://doi.org/10.1116/1.582743
Characterization and performance improvement of secondary electron analyzers
J. Vac. Sci. Technol. B 1, 1348–1351 (1983)
https://doi.org/10.1116/1.582723
Heating and temperature‐induced distortions of silicon x‐ray masks
J. Vac. Sci. Technol. B 1, 1352–1357 (1983)
https://doi.org/10.1116/1.582724
Simulation of backscattered electron signals for x‐ray mask inspection
J. Vac. Sci. Technol. B 1, 1358–1363 (1983)
https://doi.org/10.1116/1.582725
A technique for the determination of stress in thin films
J. Vac. Sci. Technol. B 1, 1364–1366 (1983)
https://doi.org/10.1116/1.582744
Exposure and development simulations for nanometer electron beam lithography
J. Vac. Sci. Technol. B 1, 1367–1371 (1983)
https://doi.org/10.1116/1.582726
Polysiloxane resist as a probe for energy deposited in electron beam exposed resists
J. Vac. Sci. Technol. B 1, 1372–1377 (1983)
https://doi.org/10.1116/1.582703
Proximity effect correction on substrates of variable material composition
J. Vac. Sci. Technol. B 1, 1378–1382 (1983)
https://doi.org/10.1116/1.582704
An image processing approach to fast, efficient proximity correction for electron beam lithography
J. Vac. Sci. Technol. B 1, 1383–1390 (1983)
https://doi.org/10.1116/1.582705
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Filtering the beam from an ionic liquid ion source
Alexander C. G. Storey, Aydin Sabouri, et al.