Skip Nav Destination
Issues
April 1983
This content was originally published in
Journal of Vacuum Science & Technology B: Microelectronics Processing and Phenomena
ISSN 0734-211X
EISSN 2327-9877
Use of molecular beam epitaxy in research and development of selected high speed compound semiconductor devices
J. Vac. Sci. Technol. B 1, 131–134 (1983)
https://doi.org/10.1116/1.582514
Growth of refractory oxide films using solid oxygen sources in a molecular beam epitaxy apparatus
J. Vac. Sci. Technol. B 1, 135–137 (1983)
https://doi.org/10.1116/1.582515
Two‐stage arsenic cracking source with integral getter pump for MBE growth
J. Vac. Sci. Technol. B 1, 138–141 (1983)
https://doi.org/10.1116/1.582516
Substrate rotation‐induced compositional oscillation in molecular beam epitaxy (MBE)
J. Vac. Sci. Technol. B 1, 146–148 (1983)
https://doi.org/10.1116/1.582518
Summary Abstract: Segregation of As observed on clean, cleaved GaAs(110) surfaces
J. Vac. Sci. Technol. B 1, 149 (1983)
https://doi.org/10.1116/1.582519
Optical properties of GaSb–AlSb superlattices
J. Vac. Sci. Technol. B 1, 152–154 (1983)
https://doi.org/10.1116/1.582521
AlAs–GaAs superlattices for optimum photoluminescence intensity
J. Vac. Sci. Technol. B 1, 155–157 (1983)
https://doi.org/10.1116/1.582522
Examination of MBE GaAs/Al0.3Ga0.7As superlattices by Auger electron spectroscopy
J. Vac. Sci. Technol. B 1, 158–161 (1983)
https://doi.org/10.1116/1.582523
Autocompensation in molecular beam epitaxial gallium arsenide: The (110) orientation
J. Vac. Sci. Technol. B 1, 162–165 (1983)
https://doi.org/10.1116/1.582524
An investigation of GaAs films grown by MBE at low substrate temperatures and growth rates
J. Vac. Sci. Technol. B 1, 166–169 (1983)
https://doi.org/10.1116/1.582525
The growth of high quality Alx Ga1−xAs by molecular beam epitaxy and its application to double‐heterojunction lasers
J. Vac. Sci. Technol. B 1, 170–173 (1983)
https://doi.org/10.1116/1.582526
Manganese and germanium redistribution in In0.53Ga0.47 As grown by molecular beam epitaxy
J. Vac. Sci. Technol. B 1, 178–181 (1983)
https://doi.org/10.1116/1.582528
Design and fabrication of high transconductance modulation‐doped (Al,Ga)As/GaAs FETs
J. Vac. Sci. Technol. B 1, 186–189 (1983)
https://doi.org/10.1116/1.582484
Temperature dependence of the I–V characteristics of modulation‐doped FETs
J. Vac. Sci. Technol. B 1, 190–195 (1983)
https://doi.org/10.1116/1.582485
Growth of millimeter‐wave GaAs IMPATT structures by molecular beam epitaxy
J. Vac. Sci. Technol. B 1, 199–201 (1983)
https://doi.org/10.1116/1.582487
GaInAs–AlInAs heterostructures for optical devices grown by MBE
J. Vac. Sci. Technol. B 1, 202–204 (1983)
https://doi.org/10.1116/1.582488
A review of recent research on the growth and physical properties of single crystal metastable elemental and alloy semiconductors
J. Vac. Sci. Technol. B 1, 229–237 (1983)
https://doi.org/10.1116/1.582492
Liquid phase epitaxy of unstable alloys: Substrate‐induced stabilization and connected effects
J. Vac. Sci. Technol. B 1, 238–242 (1983)
https://doi.org/10.1116/1.582493
A new type of order–disorder transition in metastable (GaAs)1−x Ge2x alloys
J. Vac. Sci. Technol. B 1, 243–245 (1983)
https://doi.org/10.1116/1.582494
Rutherford backscattering/channeling and transmission electron microscopy analysis of epitaxial BaF2 films on Ge and InP
J. Vac. Sci. Technol. B 1, 246–249 (1983)
https://doi.org/10.1116/1.582495
Thermal oxidation and anodic film–substrate reactions on Inx Ga1−x Asy P1−y
J. Vac. Sci. Technol. B 1, 254–259 (1983)
https://doi.org/10.1116/1.582497
Low pressure‐MOCVD growth of Ga0.47In0.53As–InP heterojunction and superlattices
J. Vac. Sci. Technol. B 1, 262–265 (1983)
https://doi.org/10.1116/1.582499
Epitaxial growth of elemental semiconductor films onto silicide/Si and fluoride/Si structures
J. Vac. Sci. Technol. B 1, 266–271 (1983)
https://doi.org/10.1116/1.582500
Modulated structures and metastable dopant concentrations in silicon annealed with Q‐switched laser pulses
J. Vac. Sci. Technol. B 1, 272–277 (1983)
https://doi.org/10.1116/1.582501
Quantum transport in GaAs doping superlattices
J. Vac. Sci. Technol. B 1, 289–292 (1983)
https://doi.org/10.1116/1.582504
Summary Abstract: The role of metastable surfaces in determining MBE heterojunction structure: GaAs/Ge interfaces
J. Vac. Sci. Technol. B 1, 314 (1983)
https://doi.org/10.1116/1.582548
Measurement of potential at semiconductor interfaces by electron spectroscopy
J. Vac. Sci. Technol. B 1, 320–327 (1983)
https://doi.org/10.1116/1.582550
Chemical and structural analysis of the GaAs/AlGaAs heterojunctions by spectroscopic ellipsometry
J. Vac. Sci. Technol. B 1, 328–333 (1983)
https://doi.org/10.1116/1.582551
Abrupt transitions in composition and doping profile in GaAs–Ga1−xAlxAs heterostructures by atmospheric pressure MOVPE
J. Vac. Sci. Technol. B 1, 334–337 (1983)
https://doi.org/10.1116/1.582552
Characterization of thin layers on perfect crystals with a multipurpose high resolution x‐ray diffractometer
J. Vac. Sci. Technol. B 1, 338–345 (1983)
https://doi.org/10.1116/1.582553
Initial growth of Al on GaAs(001) and electrical characterization of the interface
J. Vac. Sci. Technol. B 1, 361–364 (1983)
https://doi.org/10.1116/1.582557
Interfacial studies of deposited thin films of refractory metals on gallium arsenide substrates. Mo–GaAs
J. Vac. Sci. Technol. B 1, 365–370 (1983)
https://doi.org/10.1116/1.582558
Transverse elastic waves in periodically layered infinite, semi‐infinite, and slab media
J. Vac. Sci. Technol. B 1, 371–375 (1983)
https://doi.org/10.1116/1.582559
A new infrared detector using electron emission from multiple quantum wells
J. Vac. Sci. Technol. B 1, 376–378 (1983)
https://doi.org/10.1116/1.582560
Ga(As,P) strained‐layer superlattices: A ternary semiconductor with independently adjustable band gap and lattice constant
J. Vac. Sci. Technol. B 1, 383–386 (1983)
https://doi.org/10.1116/1.582562
Doping and transport studies in InxGa1−xAs/GaAs strained‐layer superlattices
J. Vac. Sci. Technol. B 1, 387–390 (1983)
https://doi.org/10.1116/1.582563
Energy levels of hydrogenic impurities and Wannier excitons in quantum well structures
J. Vac. Sci. Technol. B 1, 391–397 (1983)
https://doi.org/10.1116/1.582564
Optical transmission in GaSb–AlSb superlattices
J. Vac. Sci. Technol. B 1, 409–411 (1983)
https://doi.org/10.1116/1.582614
Plasma oscillations of layered electron gases in semiconductor heterostructures
J. Vac. Sci. Technol. B 1, 412–414 (1983)
https://doi.org/10.1116/1.582615
A simple model for the index of refraction of GaAs–AlAs superlattices and heterostructure layers: Contributions of the states around Γ
J. Vac. Sci. Technol. B 1, 415–419 (1983)
https://doi.org/10.1116/1.582616
Persistent red shift of the photoluminscence from the semi‐insulating GaAs substrate in an AlxGa1−xAs/GaAs modulation‐doped structure
J. Vac. Sci. Technol. B 1, 420–422 (1983)
https://doi.org/10.1116/1.582617
Observation of the deHaas–van Alphen effect in a two‐dimensional electron system
J. Vac. Sci. Technol. B 1, 423–426 (1983)
https://doi.org/10.1116/1.582618
Cyclotron resonance of 2D electrons in GaAs/AlxGa1−xAs heterostructures at low densities
J. Vac. Sci. Technol. B 1, 427–430 (1983)
https://doi.org/10.1116/1.582619
Tunneling and propagating transport in GaAs–Ga1−xAlxAs–GaAs(100) double heterojunctions
J. Vac. Sci. Technol. B 1, 439–444 (1983)
https://doi.org/10.1116/1.582622
Effects of band bending on real space transfer in GaAs–AlxGa1−xAs layered heterostructures
J. Vac. Sci. Technol. B 1, 445–448 (1983)
https://doi.org/10.1116/1.582623
Electron transport in planar‐doped barrier structures using an ensemble Monte Carlo method
J. Vac. Sci. Technol. B 1, 449–454 (1983)
https://doi.org/10.1116/1.582624
Summary Abstract: Electrical properties of MBE‐grown GaAs/N–AlGaAs heterostructures and application to high speed devices
J. Vac. Sci. Technol. B 1, 456 (1983)
https://doi.org/10.1116/1.582626
Band‐gap engineering via graded gap, superlattice, and periodic doping structures: Applications to novel photodetectors and other devices
J. Vac. Sci. Technol. B 1, 457–461 (1983)
https://doi.org/10.1116/1.582627
Growth, characterization, and properties of metastable and modulated semiconductor structures: Prospects for future studies
J. Vac. Sci. Technol. B 1, 462–467 (1983)
https://doi.org/10.1116/1.582628
Surface processes in plasma‐assisted etching environments
J. Vac. Sci. Technol. B 1, 469–480 (1983)
https://doi.org/10.1116/1.582629
Ultrahigh molecular weight poly(methyl methacrylate) as an electron‐beam resist
J. Vac. Sci. Technol. B 1, 481–486 (1983)
https://doi.org/10.1116/1.582630
Planarizing of phosphosilicate glass films on patterned silicon wafers
J. Vac. Sci. Technol. B 1, 487–489 (1983)
https://doi.org/10.1116/1.582631
A UHV‐compatible round wafer heater for silicon molecular beam epitaxy
J. Vac. Sci. Technol. B 1, 497–500 (1983)
https://doi.org/10.1116/1.582634
End‐point detection and etch‐rate measurement during reactive‐ion etching using fluorescent polymer films
J. Vac. Sci. Technol. B 1, 501–504 (1983)
https://doi.org/10.1116/1.582635
Erratum: Temperature profiles in solid targets irradiated with finely focused beams [J. Vac. Sci. Technol. B 1, 91 (1983)]
J. Vac. Sci. Technol. B 1, 505 (1983)
https://doi.org/10.1116/1.582591
Future of plasma etching for microelectronics: Challenges and opportunities
Gottlieb S. Oehrlein, Stephan M. Brandstadter, et al.
Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications
Haochen Zhao, Suho Park, et al.
Heating of photocathode via field emission and radiofrequency pulsed heating: Implication toward breakdown
Ryo Shinohara, Soumendu Bagchi, et al.