The dependence of the quantum efficiency (QE) of a Cs/O-activated negative-electron-affinity (NEA) state InGaN photocathode on threading dislocation density (TDD) was investigated. InGaN photocathodes with different TDDs were grown on sapphire and GaN substrates by metal-organic vapor-phase epitaxy (MOVPE). The TDDs were 1 × 109 cm−2 on the sapphire substrate and less than 5 × 106 cm−2 on the GaN substrate. After the activation of the NEA state of InGaN photocathode surfaces by Cs/O, the QEs were 1.1% on the sapphire substrate and 0.91% on the GaN substrate. Despite a TDD difference of approximately two orders of magnitude, the QEs were comparable. The results show that the QE is not limited by the high TDD in the InGaN photocathode.
REFERENCES
1.
G. R.
Neil
et al, Phys. Rev. Lett.
84
, 662
(2000
). 2.
J.
Grames
, R.
Suleiman
, P. A.
Adderley
, J.
Clark
, J.
Hansknecht
, D.
Machie
, M.
Poelker
, and M. L.
Stutzman
, Phys. Rev. Spec. Top.
14
, 043501
(2011
). 3.
D. A.
Orlov
, U.
Weigel
, D.
Schwalm
, A. S.
Terekhov
, and A.
Wolf
, Nucl. Instrum. Methods Phys. Res. Section A
532
, 418
(2004
). 4.
K.
Aulenbacher
, J.
Schuler
, D.
Harrach
, E.
Reichert
, J.
Röthgen
, A.
Subashev
, V.
Tioukine
, and Y.
Yashin
, J. Appl. Phys.
92
, 7536
(2002
). 5.
W. E.
Spicer
, Phys. Rev.
112
, 114
(1958
). 6.
T.
Nishitani
, M.
Tabuchi
, Y.
Takeda
, Y.
Suzuki
, K.
Motoki
, and T.
Meguro
, Jpn. J. Appl. Phys.
48
, 06FF02
(2009
). 7.
T.
Nishitani
, M.
Tabuchi
, H.
Amano
, T.
Maekawa
, M.
Kuwahara
, and T.
Meguro
, J. Vac. Sci. Technol. B
32
, 06F
(2014
). 8.
T.
Nishitani
, Y.
Arakawa
, S.
Noda
, A.
Koizumi
, D.
Sato
, H.
Shikano
, H.
Iijima
, Y.
Honda
, and H.
Amano
, J. Vac. Sci. Technol. B
40
, 064203
(2022
). 9.
D.
Sato
et al, Proc. SPIE
12496
, 1249629
(2023
).10.
T.
Nishitani
, T.
Maekawa
, M.
Tabuchi
, T.
Meguro
, Y.
Honda
, and H.
Amano
, Proc. SPIE
9363
, 93630T
(2015
). 11.
D.
Sato
, T.
Nishitani
, Y.
Honda
, and H.
Amano
, Jpn. J. Appl. Phys.
55
, 05FH05
(2016
). 12.
D.
Sato
, A.
Honda
, A.
Koizumi
, T.
Nishitani
, Y.
Honda
, and H.
Amano
, Microelectron. Eng.
223
, 111229
(2020
). 13.
S. D.
Lester
, F. A.
Ponce
, M. G.
Craford
, and D. A.
Steigerwald
, Appl. Phys. Lett.
66
, 1249
(1995
). 14.
T.
Zheleva
, O. H.
Nam
, J. D.
Griffin
, M. D.
Bremser
, and R. F.
Davis
, MRS Online Proc. Library
482
, 393
(1997
). 15.
S. F.
Chichibu
et al, Nat. Mater.
5
, 810
(2006
). 16.
G.
Orsal
, Y.
El Gmili
, N.
Fressengeas
, J.
Streque
, R.
Djerboub
, T.
Moudakir
, S.
Sundaram
, A.
Ougazzaden
, and J. P.
Salvestrini
, Opt. Mater. Express
4
, 1030
(2014
). 17.
I. H.
Kim
, H. S.
Park
, Y. J.
Park
, and T.
Kim
, Appl. Phys. Lett.
73
, 1634
(1998
). 18.
N.
Takahashi
, S.
Tanaka
, M.
Ichikawa
, Y. Q.
Cai
, and M.
Kamada
, J. Phys. Soc. Jpn.
66
, 2798
(1997
). 19.
T.
Nishitani
, M.
Tabuchi
, K.
Motoki
, T.
Takashima
, A.
Era
, and Y.
Takeda
, J. Phys.: Conf. Ser.
298
, 012010
(2011
). 20.
A.
Herrera-Gómez
, G.
Vergara
, and W. E.
Spicer
, J. Appl. Phys.
79
, 7318
(1996
). 21.
S. A.
Rozhkov
, V. V.
Bakin
, D. V.
Gorshkov
, S. N.
Kosolobov
, and H. E.
Scheibler
, J. Phys.: Conf. Ser.
1199
, 012031
(2019
). 22.
T. T.
Mnatsakanov
, M. E.
Levinshtein
, L. I.
Pomortseva
, S. N.
Yurkov
, G. S.
Simin
, and M.
Asif Khan
, Solid-State Electron.
47
, 111
(2003
). 23.
M.
Smith
, G. D.
Chen
, J. Y.
Lin
, H. X.
Jiang
, M.
Asif Khan
, and Q.
Chen
, Appl. Phys. Lett.
69
, 2837
(1996
). 24.
Z. Z.
Bandić
, P. M.
Bridger
, E. C.
Piquette
, and T. C.
McGill
, Solid-State Electron.
44
, 221
(2000
). 2025 Published under an exclusive license by the AVS.
2025
Author(s)
You do not currently have access to this content.