To address the challenges of accurate metrology of the aspect ratio parameter and height of three-dimensional structures with critical dimension scanning electron microscopy, a method based on the features of the proximity effect and deep learning is proposed, and its validity is evaluated as well. Monte Carlo simulations are used to obtain a secondary electron signal, which reflects the morphology of the sample. To improve the efficiency of the method, supplemented functions have been made to the Nebula simulator for the creation of realistic geometrical structures with rounded corners and batch simulation process. Analysis on secondary electron signals from trapezoidal structures with different trench bottom widths, sidewall angles, and heights is undertaken, which shows the relation between geometrical parameters and proximity effects. These features of the proximity effect reflected in the signals are extracted by a fully connected residual neural network for aspect ratio and height prediction. To verify the generality of the method, electron beam illumination including vertical and titling conditions are investigated. The simulation results demonstrate the feasibility of the neural network to learn and predict the corresponding aspect ratio and heights.

1.
M.
Neisser
,
J. Microelectron. Manuf.
1
,
18010204
(
2018
).
3.
V. N.
Tondare
,
J. S.
Villarrubia
, and
A. E.
Vladár
,
Microsc. Microanal.
23
,
967
(
2017
).
4.
W.
Sun
,
H.
Ohta
,
T.
Ninomiya
, and
Y.
Goto
,
J. Micro/Nanolithogr. Mem.
19
,
024002
(
2020
).
5.
X.
Zhang
et al,
J. Micro/Nanolithogr. Mem.
13
,
041407
(
2014
).
6.
J. S.
Villarrubia
,
R. G.
Dixson
, and
A. E.
Vladár
,
Proc. SPIE
7638
,
76380S
(
2010
).
7.
A. E.
Vladár
,
P.
Cizmar
,
J. S.
Villarrubia
, and
M. T.
Postek
,
Proc. SPIE
8324
,
832402
(
2012
).
8.
C. G.
Frase
,
E.
Buhr
, and
K.
Dirscherl
,
Meas. Sci. Technol.
18
,
510
(
2007
).
9.
S.
Feng
,
C.
Zuo
,
W.
Yin
,
G.
Gu
, and
Q.
Chen
,
Opt. Lasers Eng.
121
,
416
(
2019
).
10.
W.
Sun
,
Y.
Goto
,
T.
Yamamoto
, and
K.
Hitomi
,
Jpn. J. Appl. Phys.
61
,
SD1036
(
2022
).
11.
K. T.
Arat
,
J.
Bolten
,
A. C.
Zonnevylle
,
P.
Kruit
, and
C. W.
Hagen
,
Microsc. Microanal.
25
,
903
(
2019
).
12.
J. S.
Villarrubia
,
A. E.
Vladár
,
B.
Ming
,
R. J.
Kline
,
D. F.
Sunday
,
J. S.
Chawla
, and
S.
List
,
Ultramicroscopy
154
,
15
(
2015
).
13.
Y. B.
Zou
,
M. S. S.
Khan
,
H. M.
Li
,
Y. G.
Li
,
W.
Li
,
S. T.
Gao
,
L. S.
Liu
, and
Z. J.
Ding
,
Measurement
123
,
150
(
2018
).
14.
H.
Demers
,
N.
Poirier-Demers
,
A. R.
Couture
,
D.
Joly
,
M.
Guilmain
,
N.
de Jonge
, and
D.
Drouin
,
Scanning
33
,
135
(
2011
).
15.
L.
van Kessel
and
C. W.
Hagen
,
SoftwareX
12
,
100605
(
2020
).
16.
K. T.
Arat
and
C. W.
Hagen
,
Results Phys.
19
,
103545
(
2020
).
17.
B. D.
Bunday
,
S.
Klotzkin
,
D.
Patriarche
, and
Y.
Ball
,
ASMC Proceedings
(
IEEE
, Albany,
2024
) pp.
1
9
.
18.
C. A.
Mack
and
B. D.
Bunday
,
Proc. SPIE
9778
,
97780A
(
2016
).
19.
Y. G.
Li
,
P.
Zhang
, and
Z. J.
Ding
,
Scanning
35
,
127
(
2013
).
20.
C.
Geuzaine
and
J.-F.
Remacle
,
Int. J. Numer. Methods Eng.
79
,
1309
(
2009
).
21.
N.
Schlömer
(
2022
). “A Python frontend for Gmsh,”
Zenodo
. https://doi.org/10.5281/zenodo.5913837
22.
K.
He
,
X.
Zhang
,
S.
Ren
, and
J.
Sun
,
Proceedings of CVPR
(
IEEE
, Las Vegas,
2016
), pp.
770
778
.
23.
D.
Chen
,
F.
Hu
,
G.
Nian
, and
T.
Yang
,
Entropy.
22
,
193
(
2020
).
24.
S.
Ioffe
and
C.
Szegedy
,
Proceedings of the 32nd International Conference on Machine Learning
(PMLR, Lille, France,
2015
), Vol. 37, pp.
448
456
.
25.
N.
Srivastava
,
G.
Hinton
,
A.
Krizhevsky
,
I.
Sutskever
, and
R.
Salakhutdinov
,
J. Mach. Learn. Res.
15
,
1929
(
2014
).
26.
C.
Valade
,
J.
Hazart
,
S.
Bérard-Bergery
,
E.
Sungauer
,
M.
Besacier
, and
C.
Gourgon
,
Proc. SPIE
10959
,
109590Y
(
2019
).
27.
K.
Kimura
and
K.
Abe
,
Proc. SPIE
5038
,
1089
(
2003
).
28.
J.
Cazaux
,
J. Electron Microsc.
61
,
261
(
2012
).
29.
B. D.
Bunday
,
C. A.
Mack
,
S.
Borisov
, and
V.
Sinitsina
,
Proc. SPIE
10959
,
109591Z
(
2019
).
You do not currently have access to this content.